精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)= ,设b>a≥0,若f(a)=f(b),则af(b)的取值范围是(
A.[ ,2)
B.[﹣ ,+∞)
C.[﹣ ,﹣
D.[﹣ ]

【答案】A
【解析】解:由函数f(x)= ,作出其图像如图,
因为函数f(x)在[0,1)和[1,+∞)上都是单调函数,
所以,若满足a>b≥0,时f(a)=f(b),
必有b∈[0,1),a∈[1,+∞),
由图可知,使f(a)=f(b)的b∈[ ,1),
f(a)∈[1,2).
由不等式的可乘积性得:bf(a)∈[ ,2).
∴af(b)的取值范围是[ ,2).
故选:A.
【考点精析】本题主要考查了函数的值的相关知识点,需要掌握函数值的求法:①配方法(二次或四次);②“判别式法”;③反函数法;④换元法;⑤不等式法;⑥函数的单调性法才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知集合A={x|x2﹣3x﹣4≤0},B={x|x2﹣2mx+m2﹣9≤0},C={y|y=2x+b,x∈R}
(1)若A∩B=[0,4],求实数m的值;
(2)若A∩C=,求实数b的取值范围;
(3)若A∪B=B,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 为自然对数的底数.

(1)若函数的图象在点处的切线方程为,求实数 的值;

(2)当时,若存在 ,使成立,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x+ (Ⅰ)判断函数的奇偶性,并加以证明;
(Ⅱ)用定义证明f(x)在(0,1)上是减函数;
(Ⅲ)函数f(x)在(﹣1,0)上是单调增函数还是单调减函数?(直接写出答案,不要求写证明过程).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若定义在R上的偶函数f(x)在[0,+∞)内是增函数,且f(3)=0,则关于x的不等式xf(x)≤0的解集为(
A.{x|﹣3≤x≤0或x≥3}
B.{x|x≤﹣3或﹣3≤x≤0}
C.{x|﹣3≤x≤3}
D.{x|x≤﹣3或x≥3}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数满足下列条件:

①周期;②图象向左平移个单位长度后关于轴对称;③.

(1)求函数的解析式;

(2)设 ,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,以为极点, 轴的正半轴为极轴建立极坐标系,曲线的参数方程为为参数, ),直线的极坐标方程为.

(1)写出曲线的普通方程和直线的直角坐标方程;

(2)为曲线上任意一点, 为直线任意一点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次国际学术会议上,来自四个国家的五位代表被安排坐在一张圆桌,为了使他们能够自由交谈,事先了解到的情况如下:

甲是中国人,还会说英语.

乙是法国人,还会说日语.

丙是英国人,还会说法语.

丁是日本人,还会说汉语.

戊是法国人,还会说德语.

则这五位代表的座位顺序应为( )

A. 甲丙丁戊乙 B. 甲丁丙乙戊

C. 甲乙丙丁戊 D. 甲丙戊乙丁

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校与英国某高中结成友好学校,该校计划选派3人作为交换生到英国进行一个月的生活体验,学校准备从该校英语兴趣小组的6名同学中选派,已知英语兴趣小组中男生有4人,女生有2人

(1)求男生甲或女生乙被选的概率

(2)记选派的3人中的女生人数为随机变量,求的分布列及数学期望.

查看答案和解析>>

同步练习册答案