精英家教网 > 高中数学 > 题目详情

设函数是定义在R上的奇函数,对任意实数成立.
(1)证明是周期函数,并指出其周期;
(2)若,求的值;
(3)若,且是偶函数,求实数的值.

(1);(2)-2;(3).

解析试题分析:(1)由可得 ,由是定义在R上的奇函数得 ,故 ; (2)根据奇偶性和 得 , ;(3)可证明是偶函数,由是偶函数,得为偶函数,故.
试题解析:(1)由,且
,所以是周期函数,且是其一个周期.
(2)因为为定义在R上的奇函数,所以,且,又的一个周期,所以
(3)因为是偶函数,且可证明是偶函数,所以为偶函数,即恒成立.
于是恒成立,于是恒成立
所以为所求.
考点:1.函数的奇偶性;2.函数的周期性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知奇函数

(1)求实数的值,并在给出的直角坐标系中画出的图象;
(2)若函数在区间上单调递增,试确定实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的值;
(2)判断上的单调性,并给予证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(其中)的图象如图所示.

(1) 求函数的解析式;
(2) 设函数,且,求的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是定义在上的奇函数,且当时,
(Ⅰ)求的表达式;
(Ⅱ)判断并证明函数在区间上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数对任意满足,若当时,),且
(1)求实数的值;
(2)求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)若,求函数在区间上的最值;
(Ⅱ)若恒成立,求的取值范围. (注:是自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数).
(1)若的定义域和值域均是,求实数的值;
(2)若对任意的,总有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,试讨论此函数的单调性。

查看答案和解析>>

同步练习册答案