精英家教网 > 高中数学 > 题目详情

【题目】选修4-4 坐标系与参数方程

在平面直角坐标系中,直线的参数方程为为参数).以原点为极点, 轴正半轴为极轴 建立极坐标系,圆的方程为

(1)写出直线的普通方程和圆的直角坐标方程;

(2)若点的直角坐标为,圆与直线交于A,B两点,求的值.

【答案】(4

【解析】试题分析:()消去参数得直线的普通方程为,由得圆的直角坐标方程;()由直线的参数方程可知直线过点,把直线的参数方程代入圆的直角坐标方程,得,化简得, ,故设是上述方程的两个实数根,所以两点对应的参数分别为,所以,由此即可求出结果.

试题解析: )消去参数得直线的普通方程为

得圆的直角坐标方程.

)由直线的参数方程可知直线过点

把直线的参数方程代入圆的直角坐标方程

化简得, ,故设是上述方程的两个实数根,所以

两点对应的参数分别为

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,AB=3,AC边上的中线BD= =5.
(1)求AC的长;
(2)求sin(2A﹣B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是2017年第一季度五省情况图,则下列陈述正确的是( )

①2017年第一季度 总量和增速均居同一位的省只有1个;

②与去年同期相比,2017年第一季度五个省的总量均实现了增长;

③去年同期的总量前三位是江苏、山东、浙江;

④2016年同期浙江的总量也是第三位.

A. ①② B. ②③④ C. ②④ D. ①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

如图,在四棱锥PABCD中,平面PAD底面ABCD,其中底面ABCD为等腰梯形,ADBC

PAABBCCD=2,PD=2PAPDQPD的中点.

(Ⅰ)证明:CQ∥平面PAB

(Ⅱ)求三棱锥Q-ACD的体积。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

设函数f(x)=alnx﹣bx2(x>0).

(1)若函数f(x)在x=1处于直线相切,求函数f(x)在上的最大值;

(2)当b=0时,若不等式f(x)≥m+x对所有的a∈[1,],x∈[1,e2]都成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知: 是同一平面上的三个向量,其中 =(1,2).
(1)若| |=2 ,且 ,求 的坐标.
(2)若| |= ,且 +2 与2 垂直,求 的夹角θ

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假设吉利公司生产的“远景”、“金刚”、“自由舰”三种型号的轿车产量分别是1600辆、6000辆和2000辆,为检验公司的产品质量,现从这三种型号的轿车中抽取48辆进行检验,这三种型号的轿车依次应抽取(
A.16,16,16
B.8,30,10
C.4,33,11
D.12,27,9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两位同学在高一年级的5次考试中,数学成绩统计如茎叶图所示,若甲、乙两人的平均成绩分别是 ,则下列叙述正确的是(
A. ,乙比甲成绩稳定
B. ,甲比乙成绩稳定
C. ,乙比甲成绩稳定
D. ,甲比乙成绩稳定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(cosx,cosx), =(sinx,﹣cosx),记函数f(x)=2 +1,其中x∈R.
(Ⅰ)求函数f(x)的最小正周期及函数f(x)的图象的对称中心的坐标;
(Ⅱ)若α∈(0, ),且f( )= ,求cos2α的值.

查看答案和解析>>

同步练习册答案