精英家教网 > 高中数学 > 题目详情

【题目】随着电子商务的发展,人们的购物习惯正在改变,基本上所有的需求都可以通过网络购物解决.小王是位网购达人,每次购买商品成功后都会对电商的商品和服务进行评价.现对其近年的200次成功交易进行评价统计,统计结果如下表所示.

对服务好评

对服务不满意

合计

对商品好评

80

40

120

对商品不满意

70

10

80

合计

150

50

200

1)是否有的把握认为商品好评与服务好评有关? 请说明理由;

2)现从这200次交易中,按照对商品好评对商品不满意采用分层抽样取出5次交易,然后从这5次交易中任选两次进行观察,求这两次交易中恰有一次对商品好评的概率.

附:(其中

【答案】1)有的把握认为商品好评与服务好评有关.见解析(2

【解析】

(1) 根据表中数据,代入,求得,然后与临界表对照下结论.

(2) 根据表格得到对商品的好评的频率为,得到交易次数为3次, 不满意的次数为2次,这是一个古典概型,先得到从5次交易中任意取出2次的基本事件总数,再找出只有一次好评的基本事件数,代入公式求解.

(1)

所以有的把握认为商品好评与服务好评有关.

(2) 由表格可知对商品的好评的频率为,采用分层抽样的方式从这200次交易中取出5次交易,则好评的交易次数为3次, 不满意的次数为2.

设好评的交易为 不满意的交易

5次交易中任意取出2次的所有取法为 共计10种情况,

其中只有一次好评的情况是 共计6种情况.

因此, 恰有一次好评的概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】四本不同的书分给三位同学,每人至少分到一本,每本书都必须有人分到,不能同时分给同一个人,则不同的分配方式共有__________种(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究某种细菌的繁殖个数y随天数x的变化情况,收集数据如下:

天数x

1

2

3

4

5

6

繁殖个数y

6

12

25

49

95

190

1)根据散点图,判断哪一个适合作为y关于x的回归方程类型;(给出判断即可,不用说明理由)

2)根据(1)中的判断及表中数据,求y关于x的回归方程参考数据:

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆周上有七个不同的点,以其中任意一点为始点,另一点为终点作向量,作出所有的向量(对于点,若作出向量,则不再作向量).若其中某四点所确定的凸四边形的四条边是首尾相接的四个向量,则称其为“零四边形”.试求以这七个点中四个点为顶点的凸四边形中,零四边形个数的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果函数的导函数的图象如图所示,则以下关于函数的判断:

①在区间内单调递增;

②在区间内单调递减;

③在区间内单调递增;

是极小值点;

是极大值点.

其中正确的是( )

A. ③⑤B. ②③C. ①④⑤D. ①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究教学方式对教学质量的影响,某高中数学老师分别用两种不同的教学方式对入学数学平均分数和优秀率都相同的甲、乙两个高一新班进行教学(勤奋程度和自觉性都一样).以下茎叶图为甲、乙两班(每班均为20人)学生的数学期末考试成绩

(1)学校规定:成绩不低于75分的为优秀.请画出下面的列联表

甲班

乙班

合计

优秀

不优秀

合计

(2)判断有多大把握认为“成绩优秀与教学方式有关”.

下面临界值表仅供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若关于的方程恰有两个不相等的实数根, 则实数的取值范围是

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】AB两种品牌各三种车型20177月的销量环比(与20176月比较)增长率如下表:

A品牌车型

A1

A2

A3

环比增长率

-7.29%

10.47%

14.70%

B品牌车型

B1

B2

B3

环比增长率

-8.49%

-28.06%

13.25%

根据此表中的数据,有如下关于7月份销量的四个结论:①A1车型销量比B1车型销量多;

②A品牌三种车型总销量环比增长率可能大于14.70%;

③B品牌三款车型总销量环比增长率可能为正;

④A品牌三种车型总销量环比增长率可能小于B品牌三种车型总销量环比增长率.

其中正确结论的个数是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A={x|x2≥9},B={x|﹣1<x≤7},C={x||x﹣2|<4}.

(1)求A∩B及A∪C;

(2)若U=R,求.

查看答案和解析>>

同步练习册答案