精英家教网 > 高中数学 > 题目详情
4.已知正项数列{an},{bn}满足:a1=3,a2=6,{bn}是等差数列,且对任意正整数n,都有bn,$\sqrt{{a}_{n}}$,bn+1成等比数列.
(1)求数列{bn}的通项公式;
(2)求Sn=$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$.

分析 (1)由已知得an=bnbn+1(n∈N*),从而得到数列{bn}是首项为$\sqrt{2}$,公差为$\frac{\sqrt{2}}{2}$的等差数列,由此能求出数列{bn}的通项公式.
(2)由an=bnbn+1=$\frac{(n+1)(n+2)}{2}$,得$\frac{1}{an}$=$\frac{2}{(n+1)(n+2)}$=2($\frac{1}{n+1}$-$\frac{1}{n+2}$),由此利用裂项法能求出Sn

解答 解 (1)∵对任意正整数n,都有bn,$\sqrt{an}$,bn+1成等比数列,且数列{an},{bn}均为正项数列,
∴an=bnbn+1(n∈N*).
∵a1=3,a2=6,∴$\left\{\begin{array}{l}{{a}_{1}={b}_{1}{b}_{2}=3}\\{{a}_{2}={b}_{2}{b}_{3}=6}\end{array}\right.$,
又{bn}为等差数列,即有b1+b3=2b2
解得b1=$\sqrt{2}$,b2=$\frac{3\sqrt{2}}{2}$,
∴数列{bn}是首项为$\sqrt{2}$,公差为$\frac{\sqrt{2}}{2}$的等差数列.
∴数列{bn}的通项公式为bn=$\frac{\sqrt{2}(n+1)}{2}$(n∈N*).
(2)由(1)得,对任意n∈N*
an=bnbn+1=$\frac{(n+1)(n+2)}{2}$,
从而有$\frac{1}{an}$=$\frac{2}{(n+1)(n+2)}$=2($\frac{1}{n+1}$-$\frac{1}{n+2}$),
∴Sn=2[($\frac{1}{2}$-$\frac{1}{3}$)+($\frac{1}{3}$-$\frac{1}{4}$)+…+($\frac{1}{n+1}$-$\frac{1}{n+2}$)]
=1-$\frac{2}{n+2}$.

点评 本题考查数列的通项公式的求法,考查数列的前n项和的求法,是中档题,解题时要认真审题,注意裂项求和法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知f(x)=e2x+(1-2t)ex+t2
(1)若g(t)=f(1),讨论关于t的函数y=g(t)在t∈[0,m](m>0)上的最小值;
(2)若对任意的t∈R,x∈[0,+∞)都有f(x)≥ax+2-cosx,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=2x+1,则f[f(x)]=4x+3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若函数f(x)是幂函数,且满足$\frac{f(4)}{f(2)}$=3,则f($\frac{1}{2}$)的值为(  )
A.-3B.-$\frac{1}{3}$C.3D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知集合A={x|1≤x≤2},B={x|x2+ax+2≤0} a∈R.
(1)若A=B,求实数a的取值.
(2)若A⊆B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=$\sqrt{1-(\frac{1}{2})^{x}}+\frac{1}{3-x}$的定义域为(  )
A.(-∞,0)B.(0,+∞)C.(0,3)∪(3,+∞)D.[0,3)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=loga(3x-5)-2的图象恒过定点P,则点P的坐标是(2,-2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在△ABC中,已知b=$\sqrt{2},c=1,B={45°}$,则a等于(  )
A.$\frac{{\sqrt{6}-\sqrt{2}}}{2}$B.$\frac{{\sqrt{6}+\sqrt{2}}}{2}$C.$\sqrt{2}+1$D.$3-\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某校书法兴趣组有3名男同学A,B,C和3名女同学X,Y,Z,其年级情况如下表:
一年级二年级三年级
男同学ABC
女同学XYZ
现从这6名同学中随机选出2人参加书法比赛(每人被选到的可能性相同).
(1)用表中字母列举出所有可能的结果;
(2)设M为事件“选出的2人来自不同年级且性别相同”,求事件M发生的概率.

查看答案和解析>>

同步练习册答案