精英家教网 > 高中数学 > 题目详情
与椭圆共焦点且过点的双曲线方程是 (    )
A.B.C.D.
B
椭圆的焦点坐标为,所以设双曲线方程为,其中。将点代入可得:,解得(舍),所以双曲线方程为,故选B
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

设C是椭圆:上任意一点,A、B是焦点,则在∆ABC中有:,类似地,点C是双曲线任意一点,A、B是两焦点,则∆ABC中有____________

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知圆(x-2)2+y2=1经过椭圆=1(ab>0)的一个顶点和一个焦点,则此椭圆的离心率e=
A.1B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

中心点在原点,准线方程为,离心率为的椭圆方程是(      )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)已知椭圆:两个焦点之间的距离为2,且其离心率为.
(Ⅰ) 求椭圆的标准方程;
(Ⅱ) 若为椭圆的右焦点,经过椭圆的上顶点B的直线与椭圆另一个交点为A,且满足,求外接圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线,当变化时,直线被椭圆截得的最大弦长是(     )
A.4B.2C.D.不能确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

.已知椭圆的中心在原点,焦点在坐标轴上,与过点P(1,2)且斜率为-2的直线相交所得的弦恰好被P平分,则此椭圆的离心率是       

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若焦点在轴上的椭圆的离心率为,则的值是___________。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若双曲线的一个焦点为(2,0),则它的离心率为( )
A.B.C.D.2

查看答案和解析>>

同步练习册答案