精英家教网 > 高中数学 > 题目详情
精英家教网要制作一个由同底圆锥和圆柱组成的储油罐(如图),设计要求:圆锥和圆柱的总高度和圆柱底面半径相等,都为r米.市场上,圆柱侧面用料单价为每平方米a元,圆锥侧面用料单价分别是圆柱侧面用料单价和圆柱底面用料单价的4倍和2倍.设圆锥母线和底面所成角为θ(弧度),总费用为y(元).
(1)写出θ的取值范围;
(2)将y表示成θ的函数关系式;
(3)当θ为何值时,总费用y最小?
分析:(1)先设圆锥的高为h1米,母线长为l米,圆柱的高为h2米;圆柱的底面用料单价为每平方米2a元,圆锥的侧面用料单价为每平方米4a元,由圆锥和圆柱的总高度和圆柱底面半径相等,都为r米.则h1<r,?tanθ=
h1
r
<1求得;
(2)圆锥的侧面用料费用为4aπrl,圆柱的侧面费用为2aπrh2,圆柱的地面费用为2aπr2?y=4aπrl+2aπrh2+2aπr2?2aπr2[(
2
cosθ
-tanθ)+3]

(3)抽象出f(θ)=
2
cosθ
-tanθ
?f′(θ)=
2sinθ-1
cos2θ
?当θ=
π
6
时,f′(θ)=
2sinθ-1
cos2θ
=0
得解.
解答:解:圆柱的底面用料单价为每平方米2a元,圆锥的侧面用料单价为每平方米4a元,
设圆锥的高为h1米,母线长为l米,圆柱的高为h2米;
(1)∵圆锥和圆柱的总高度和圆柱底面半径相等,都为r米.
则h1<r,
tanθ=
h1
r
<1
θ∈(0,
π
4
)
…(3分)
(2)圆锥的侧面用料费用为4aπrl,圆柱的侧面费用为2aπrh2,圆柱的地面费用为2aπr2,..(6分)(每个面积公式1分)
则y=4aπrl+2aπrh2+2aπr2
=2aπr(2l+h2+r)=2aπr[
2r
cosθ
+(r-h1)+r]
=2aπr[
2r
cosθ
+(r-rtanθ)+r]=2aπr2[(
2
cosθ
-tanθ)+2]
(9分)
(3)设f(θ)=
2
cosθ
-tanθ
,其中θ∈(0,
π
4
)
…(10分)
f′(θ)=
2sinθ-1
cos2θ
,..(11分)
θ=
π
6
时,f′(θ)=
2sinθ-1
cos2θ
=0

θ∈(0,
π
6
)
时,f′(θ)=
2sinθ-1
cos2θ
<0

θ∈(
π
6
π
4
)
时,f′(θ)=
2sinθ-1
cos2θ
>0
;..(13分)
则当θ=
π
6
时,f(θ)取得最小值,..(14分)
则当θ=
π
6
时,费用y最小(15分)
点评:本题主要考查函数模型的建立,定义域和函数最值的求法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

要制作一个由同底圆锥和圆柱组成的储油罐(如图),设计要求:圆锥和圆柱的总高度和圆柱底面半径相等,都为r米.市场上,圆柱侧面用料单价为每平方米a元,圆锥侧面用料单价分别是圆柱侧面用料单价和圆柱底面用料单价的4倍和2倍.设圆锥母线和底面所成角为θ(弧度),总费用为y(元).
(1)写出θ的取值范围;
(2)将y表示成θ的函数关系式;
(3)当θ为何值时,总费用y最小?

查看答案和解析>>

科目:高中数学 来源:2010年江苏省镇江市高考数学一模试卷(解析版) 题型:解答题

要制作一个由同底圆锥和圆柱组成的储油罐(如图),设计要求:圆锥和圆柱的总高度和圆柱底面半径相等,都为r米.市场上,圆柱侧面用料单价为每平方米a元,圆锥侧面用料单价分别是圆柱侧面用料单价和圆柱底面用料单价的4倍和2倍.设圆锥母线和底面所成角为θ(弧度),总费用为y(元).
(1)写出θ的取值范围;
(2)将y表示成θ的函数关系式;
(3)当θ为何值时,总费用y最小?

查看答案和解析>>

科目:高中数学 来源:2010年江苏省镇江市高三第一次调研数学试卷(解析版) 题型:解答题

要制作一个由同底圆锥和圆柱组成的储油罐(如图),设计要求:圆锥和圆柱的总高度和圆柱底面半径相等,都为r米.市场上,圆柱侧面用料单价为每平方米a元,圆锥侧面用料单价分别是圆柱侧面用料单价和圆柱底面用料单价的4倍和2倍.设圆锥母线和底面所成角为θ(弧度),总费用为y(元).
(1)写出θ的取值范围;
(2)将y表示成θ的函数关系式;
(3)当θ为何值时,总费用y最小?

查看答案和解析>>

同步练习册答案