【题目】已知函数(且).
(Ⅰ)当时,求函数的单调区间.
(Ⅱ)当时,,求的取值范围.
【答案】(Ⅰ)单调减区间为,单调增区间为 (Ⅱ)k<0或k
【解析】
(Ⅰ)求得函数的导数,根据导数的符号,即可求得函数的单调区间;
(Ⅱ)当时,,当时,上不等式成立;当时,不等式等价于,设,进而令,
利用导数求得函数的单调区间和最值,从而可求得的取值范围.
(Ⅰ)由题意,函数f(x),则,
当时,,当时,,
所以函数的单调减区间为,单调增区间为.
(Ⅱ)时,,
①当时,上不等式成立,满足题设条件;
②当时,,等价于,
设,则,
设,则,
∴在[1,+∞)上单调递减,得,
①当,即时,得,
∴在上单调递减,得,满足题设条件;
②当,即时,,而,
∴,又单调递减,
∴当,得,
∴在上单调递增,得,不满足题设条件.
综上所述,或.
科目:高中数学 来源: 题型:
【题目】如图1为某省2018年1~4月快递业务量统计图,图2是该省2018年1~4月快递业务收入统计图,下列对统计图理解错误的是( )
A. 2018年1~4月的业务量,3月最高,2月最低,差值接近2000万件
B. 2018年1~4月的业务量同比增长率均超过50%,在3月底最高
C. 从两图来看,2018年1~4月中的同一个月的快递业务量与收入的同比增长率并不完全一致
D. 从1~4月来看,该省在2018年快递业务收入同比增长率逐月增长
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an}满足.
(1)若,求证:存在(a,b,c为常数),使数列是等比数列,并求出数列{an}的通项公式;
(2)若an 是一个等差数列{bn}的前n项和,求首项a1的值与数列{bn}的通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的离心率为,点为左焦点,过点作轴的垂线交椭圆于、两点,且.
(1)求椭圆的方程;
(2)在圆上是否存在一点,使得在点处的切线与椭圆相交于、两点满足?若存在,求的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:
(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;
(2)求40名工人完成生产任务所需时间的中位数,并将完成生产任务所需时间超过和不超过的工人数填入下面的列联表:
超过 | 不超过 | |
第一种生产方式 | ||
第二种生产方式 |
(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?
附:,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市随机抽取一年(365天)内100天的空气质量指数的监测数据,结果统计如下:
记某企业每天由空气污染造成的经济损失(单位:元),空气质量指数为.当时,企业没有造成经济损失;当对企业造成经济损失成直线模型(当时造成的经济损失为,当时,造成的经济损失;当时造成的经济损失为2000元;
(1)试写出的表达式:
(2)在本年内随机抽取一天,试估计该天经济损失超过350元的概率;
(3)若本次抽取的样本数据有30天是在供暖季,其中有12天为重度污染,完成下面列联表,并判断能否有的把握认为该市本年空气重度污染与供暖有关?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com