精英家教网 > 高中数学 > 题目详情
对于使-x2+2x≤M成立的所有常数M中,我们把M的最小值1叫做-x2+2x的上确界,若a,b∈R+,且a+b=1,则的上确界为( )
A.
B.
C.
D.-4
【答案】分析:由题意可知,求的是的最小值,并且a,b>0,a+b=1,由此想到利用1的整体代换构造积为定值.
解答:解:∵,(当且仅当时取到等号)
(当且仅当时取到上确界)
故选B.
点评:这是一个常见的利用基本不等式求最值的问题,主要是利用题设构造积为定值的技巧.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于使-x2+2x≤M成立的所有常数M中,我们把M的最小值1叫做-x2+2x的上确界,若a,b∈R+,且a+b=1,则-
1
2a
-
2
b
的上确界为(  )
A、
9
2
B、-
9
2
C、-
1
4
D、-4

查看答案和解析>>

科目:高中数学 来源: 题型:

对于使-x2+2x≤M恒成立的所有常数M中,M的最小值为
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

对于使-x2+2x≤M成立的所有常数M中,我们把M的最小值l做-x2+2x的上确界,若a,b∈R,且a+b=1,则-
1
2a
-
2
b
的上确界为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对于使x2-2x≥M成立的所有常数M中,我们把M的最大值-1,称为函数x2-2x的“下确界”,若x,y,z∈R+,且x-y+2z=0,
y2
xz
的“下确界”为(  )
A、8B、6C、4D、1

查看答案和解析>>

科目:高中数学 来源:2011年江苏省高考数学仿真押题试卷(09)(解析版) 题型:解答题

对于使-x2+2x≤M成立的所有常数M中,我们把M的最小值l做-x2+2x的上确界,若a,b∈R,且a+b=1,则--的上确界为   

查看答案和解析>>

同步练习册答案