精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱锥中,平面M中点,H为线段上一点(除的中点外),且.当三棱锥的体积最大时,则三棱锥的外接球表面积为(

A.B.

C.D.

【答案】B

【解析】

利用线面垂直的判定定理和性质,可以证明平面,利用三棱锥的等积性,结合基本不等式,这样可以求出,过点C,取的中点TN,连接,过点T的平行线交于点O.利用线面垂直的性质和判定定理可以证明出O为三棱锥的外接球的球心,运用正切函数的定义,球的表面积公式进行求解即可.

中,因为M中点,故,且,因为,所以平面,故,又因为,所以平面,因此,故平面,三棱锥的体积等于三棱锥的体积,即只需底面面积最大即可.因为,则,故,当且仅当时取等号.中,,故,过点C,取的中点TN,连接,过点T的平行线交于点O.平面平面.平面,故平面.因此O为三棱锥的外接球的球心,由,因为,所以,故,即三棱锥的外接球表面积为.

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在综合素质评价的某个维度的测评中,依据评分细则,学生之间相互打分,最终将所有的数据合成一个分数,满分100分,按照大于或等于80分的为优秀,小于80分的为合格,为了解学生的在该维度的测评结果,在毕业班中随机抽出一个班的数据.该班共有60名学生,得到如下的列联表:

优秀

合格

总计

男生

6

女生

18

合计

60

已知在该班随机抽取1人测评结果为优秀的概率为.

1)完成上面的列联表;

2)能否在犯错误的概率不超过0.10的前提下认为性别与测评结果有关系?

3)现在如果想了解全校学生在该维度的表现情况,采取简单随机抽样方式在全校学生中抽取少数一部分来分析,请你选择一个合适的抽样方法,并解释理由.

附:

0.25

0.10

0.025

1.323

2.706

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,(其中e为自然对数的底数),若关于x的方程恰有5个相异的实根,则实数a的取值范围为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题:函数上单调递增;命题:函数上单调递减.

(Ⅰ)若是真命题,求实数的取值范围;

(Ⅱ)若为真命题,为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)研究函数fx在(0π)上的单调性;

2)求函数gx)=x2+πcosx的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我市某区2018年房地产价格因棚户区改造实行货币化补偿,使房价快速走高,为抑制房价过快上涨,政府从20192月开始采用实物补偿方式(以房换房),3月份开始房价得到很好的抑制,房价渐渐回落,以下是20192月后该区新建住宅销售均价的数据:

月份

3

4

5

6

7

价格(百元/平方米)

83

82

80

78

77

1)研究发现,3月至7月的各月均价(百元/平方米)与月份之间具有较强的线性相关关系,求价格(百元/平方米)关于月份的线性回归方程;

2)用表示用(1)中所求的线性回归方程得到的与对应的销售均价的估计值,3月份至7月份销售均价估计值与实际相应月份销售均价差的绝对值记为,即.,则将销售均价的数据称为一个好数据,现从5个销售均价数据中任取2个,求抽取的2个数据均是好数据的概率.

参考公式:回归方程系数公式;参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是2017年第一季度五省GDP情况图,则下列陈述中不正确的是(

A.2017年第一季度GDP增速由高到低排位第5的是浙江省

B.2017年第一季度GDP总量和增速由高到低排位均居同一位的省只有1

C.去年同期河南省的GDP总量不超过4000亿元

D.与去年同期相比,2017年第一季度五个省的GDP总量均实现了增长

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于数列,若从第二项起的每一项均大于该项之前的所有项的和,则称数列.

1)若的前项和,试判断是否是数列,并说明理由;

2)设数列是首项为、公差为的等差数列,若该数列是数列,求的取值范围;

3)设无穷数列是首项为、公比为的等比数列,有穷数列是从中取出部分项按原来的顺序所组成的不同数列,其所有项和分别为,求数列时所满足的条件,并证明命题“若,则不是数列”.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,离心率为为椭圆上一动点(异于左右顶点),面积的最大值为

(1)求椭圆的方程;

(2)若直线与椭圆相交于点两点,问轴上是否存在点,使得是以为直角顶点的等腰直角三角形?若存在,求点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案