【题目】已知无穷数列的前项中的最大项为,最小项为,设
(1)若,求数列的通项公式;
(2)若,求数列的前项和;
(3)若数列是等差数列,求证:数列是等差数列.
【答案】(1)(2),当时,(3)证明见解析
【解析】
(1)根据数列为递增数列得到答案.
(2)计算,时,数列单调递减,故时,,利用分组求和与错位相减法计算得到答案.
(3)设数列的公差为,则,讨论,,三种情况,分别证明等差数列得到答案.
(1)是递增数列,所以,所以.
(2)由得,
当,即;当,即
又,所以,
当时,,
所以,
令,对应的前项和为,
则,,
两式相减化简整理得到:,
当时,.
综上所述,,当时,.
(3)设数列的公差为,则,
由题意,
①,对任意都成立,即,是递增数列.
所以,所以,
所以是公差为的等差数列;
②当时,对任意都成立,进而,
所以是递减数列.,所以
所以是公差为的等差数列;
③当时,,
因为与中至少有一个为0,所以二者都为0,进而为常数列,
综上所述,数列等差数列.
科目:高中数学 来源: 题型:
【题目】某中学的甲、乙、丙三名同学参加高校自主招生考试,每位同学彼此独立的从五所高校中任选2所.
(1)求甲、乙、丙三名同学都选高校的概率;
(2)若已知甲同学特别喜欢高校,他必选校,另在四校中再随机选1所;而同学乙和丙对五所高校没有偏爱,因此他们每人在五所高校中随机选2所.
(i)求甲同学选高校且乙、丙都未选高校的概率;
(ii)记为甲、乙、丙三名同学中选高校的人数,求随机变量的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】P是圆上的动点,P点在x轴上的射影是D,点M满足.
(1)求动点M的轨迹C的方程,并说明轨迹是什么图形;
(2)过点的直线l与动点M的轨迹C交于不同的两点A,B,求以OA,OB为邻边的平行四边形OAEB的顶点E的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.
(Ⅰ)求直线的直角坐标方程与曲线的普通方程;
(Ⅱ)已知点设直线与曲线相交于两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点、点及抛物线.
(1)若直线过点及抛物线上一点,当最大时求直线的方程;
(2)轴上是否存在点,使得过点的任一条直线与抛物线交于点,且点到直线的距离相等?若存在,求出点的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数),将曲线上各点纵坐标伸长到原来的2倍(横坐标不变)得到曲线,以坐标原点为极点,轴正半轴为极轴,建立极坐标系,直线的极坐标方程为.
(1)写出的极坐标方程与直线的直角坐标方程;
(2)曲线上是否存在不同的两点,(以上两点坐标均为极坐标,,),使点、到的距离都为3?若存在,求的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4—4:坐标系与参数方程]
在平面直角坐标系中,曲线的参数方程为(为参数,),以坐标原点为极点,轴的非负半轴为极轴,建立极坐标系,直线的极坐标方程为.
(1)设是曲线上的一个动眯,当时,求点到直线的距离的最小值;
(2)若曲线上所有的点都在直线的右下方,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com