精英家教网 > 高中数学 > 题目详情
对定义在实数集R上的函数f1(x),f2(x),令F(x)=f1(x)+f2(x),已知对任意不同的实数x1,x2,|f1(x1)-f1(x2)|>|f2(x1)-f2(x2)|.
(1)若y=f1(x)是区间D上的增函数,能否确定y=F(x)是区间D上的增函数?若能够确定,说明理由;若不能,请举例说明;
(2)若y=f2(x)是区间D上的增函数,能否确定y=F(x)是区间D上的增函数?若能够确定,说明理由;若不能,请举例说明;
(3)求函数f(x)=x2+
1
4x
(x>0)
的单调区间.
(1)设x1<x2由y=f1(x)是区间D上的增函数可得f1(x1)<f1(x2
①若f2(x)为单调递增或常函数,则y=F(x)是区间D上的增函数
②若函数f2(x1)>f2(x2),则由|f1(x1)-f1(x2)|>|f2(x1)-f2(x2)|可得,-f1(x1)+f1(x2)|>f2(x1)-f2(x2
∴f1(x1)+f2(x1)<f1(x2)+f2(x2)即F(x1)<F(x2
综上可得函数F(X)为单调递增的函数
(2)例如函数f1(x)=-3x,f2(x)=2x,则F(x)=2x-3x不是单调递增函数
(3)f(x)=2x-
1
4x2
=
8x3-1
4x2

∵x>0由f′(x)≥0可得x
1
2
,f′(x)<0可得0<x<
1
2

函数f(x)的单调增区间是[
1
2
,+∞
),单调减区间是(0,
1
2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)是定义在实数集R上的不恒为零的偶函数,且对任意实数x都有xf(x+1)=(1+x)f(x),则f[f(
5
2
)]的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在实数集R上的函数f(x)=
1
3
x3+
1
2
(a-4)x2+2(2-a)x+a
与y轴的交点为A,点A到原点的距离不大于1;
(1)求a的范围;
(2)是否存在这样的区间,使对任意a,f(x)在该区间上为增函数?若存在,求出该区间,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

对定义在实数集R上的函数f1(x),f2(x),令F(x)=f1(x)+f2(x),已知对任意不同的实数x1,x2,|f1(x1)-f1(x2)|>|f2(x1)-f2(x2)|.
(1)若y=f1(x)是区间D上的增函数,能否确定y=F(x)是区间D上的增函数?若能够确定,说明理由;若不能,请举例说明;
(2)若y=f2(x)是区间D上的增函数,能否确定y=F(x)是区间D上的增函数?若能够确定,说明理由;若不能,请举例说明;
(3)求函数f(x)=x2+
14x
(x>0)
的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对定义在实数集R上的函数f1(x),f2(x),令F(x)=f1(x)+f2(x),已知对任意不同的实数x1,x2,|f1(x1)-f1(x2)|>|f2(x1)-f2(x2)|.
(1)若y=f1(x)是区间D上的增函数,能否确定y=F(x)是区间D上的增函数?若能够确定,说明理由;若不能,请举例说明;
(2)若y=f2(x)是区间D上的增函数,能否确定y=F(x)是区间D上的增函数?若能够确定,说明理由;若不能,请举例说明;
(3)求函数数学公式的单调区间.

查看答案和解析>>

同步练习册答案