精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线Cx22y,过点(02)作直线l交抛物线于AB两点.

1)证明:OAOB

2)若直线l的斜率为1,过点AB分别作抛物线的切线l1l2,若直线l1l2,相交于点P,直线l1l2x轴分别于点MN,求△MNP的外接圆的方程.

【答案】1)证明见解析(2

【解析】

1)设直线,设,联立方程得到,故,得到证明.

2)求导得到,得到切线方程,计算点,设的外接圆的方程为:,计算得到,得到答案.

1)显然直线的斜率存在,设直线,设

联立

.

2

切线,同理可得切线.

,则,联立得点

的外接圆的方程为:,令,则.

由韦达定理可得

则圆的方程为:,即.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代内容极为丰富的数学名著,书中有一个“引葭赴岸”问题:“今有池方一丈,葭生其中央.出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何?”其意思为“今有水池1丈见方(即尺),芦苇生长在水的中央,长出水面的部分为1.将芦苇向池岸牵引,恰巧与水岸齐接(如图所示).试问水深、芦苇的长度各是多少?假设,现有下述四个结论:

①水深为12尺;②芦苇长为15尺;③;④.

其中所有正确结论的编号是(

A.①③B.①③④C.①④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)的左、右焦点分别为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切,点在椭圆上,

1)求椭圆的方程;

2)若直线与椭圆交于两点,点,若,求斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A1)是离心率为的椭圆Cab0)上的一点,斜率为的直线BD交椭圆CBD两点,且ABD三点不重合

1)求椭圆C的方程;

2)求证:直线ABAD的斜率之和为定值

3ABD面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在最新公布的湖南新高考方案中,“”模式要求学生在语数外3门全国统考科目之外,在历史和物理2门科目中必选且只选1门,再从化学、生物、地理、政治4门科目中任选2门,后三科的高考成绩按新的规则转换后计入高考总分.相应地,高校在招生时可对特定专业设置具体的选修科目要求.双超中学高一年级有学生1200人,现从中随机抽取40人进行选科情况调查,用数字1~6分别依次代表历史、物理、化学、生物、地理、政治6科,得到如下的统计表:

序号

选科情况

序号

选科情况

序号

选科情况

序号

选科情况

1

134

11

236

21

156

31

235

2

235

12

234

22

235

32

236

3

235

13

145

23

245

33

235

4

145

14

135

24

235

34

135

5

156

15

236

25

256

35

156

6

245

16

236

26

156

36

236

7

256

17

156

27

134

37

156

8

235

18

236

28

235

38

134

9

235

19

145

29

246

39

235

10

236

20

235

30

156

40

245

1)双超中学规定:每个选修班最多编排50人且尽量满额编班,每位老师执教2个选修班(当且仅当一门科目的选课班级总数为奇数时,允许这门科目的1位老师只教1个班).已知双超中学高一年级现有化学、生物科目教师每科各8人,用样本估计总体,则化学、生物两科的教师人数是否需要调整?如果需要调整,各需增加或减少多少人?

2)请创建列联表,运用独立性检验的知识进行分析,探究是否有的把握判断学生“选择化学科目”与“选择物理科目”有关.

附:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

3)某高校在其热门人文专业的招生简章中明确要求,仅允许选修了历史科目,且在政治和地理2门中至少选修了1门的考生报名.现从双超中学高一新生中随机抽取3人,设具备高校专业报名资格的人数为,用样本的频率估计概率,求的分布列与期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若曲线处的切线恰与曲线相切,求a的值;

2)不等式对一切正实数x恒成立,求a的取值范围;

3)已知,若函数上有且只有一个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是边长为6的正方形,已知,且并与对角线交于,现以为折痕将正方形折起,且重合,记重合后为,记重合后为.

1)求证:平面平面

2)求平面与平面所成二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆过定点,且与定直线相切.

1)求动圆圆心的轨迹的方程;

2)过点的任一条直线与轨迹交于不同的两点,试探究在轴上是否存在定点(异于点),使得?若存在,求点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=x|xa|aR.

1)当f2+f(﹣2)>4时,求a的取值范围;

2)若a0xy∈(﹣a],不等式fx≤|y+3|+|ya|恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案