精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)= x2+lnx(其中a≠0)
(1)求f(x)的单调区间;
(2)若f(x)<﹣ 恒成立,试求实数a的取值范围.

【答案】
(1)解:因为函数f(x)= x2+lnx,

=

①当a>0时f′(x)>0在x∈(0,+∞)恒成立,

②当a<0时,令f′(x)=0,

时,f′(x)>0,f(x) 为增函数,

时,f′(x)<0,f(x) 为减函数

综上,a>0 时,f(x) 增区间为(0,+∞)\

a<0 时,f(x)的增区间为 ,减区间


(2)解:由(1)知a>0 时,在f(x)在(0,+∞)递增,

且x=1时,f(1)

不恒成立,

故a<0

又f(x)的极大值即f(x)最大

因为

只须

,即

∴﹣2<a<0

即a的取值范围是(﹣2,0)


【解析】(1)求出导函数,当a>0时f′(x)>0在x∈(0,+∞)恒成立,得到f(x)在(0,+∞)上递增,当a<0时,令导函数大于0求出递增区间;导函数小于0求出递减区间.(2)利用(1)的单调性,求出函数f(x)的极值,进一步求出函数的最值,得到参数a的范围.
【考点精析】认真审题,首先需要了解利用导数研究函数的单调性(一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减),还要掌握函数的最大(小)值与导数(求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的奇函数,f(1)=0, >0(x>0),则不等式x2f(x)>0的解集是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,多面体中,四边形是菱形, 相交于 ,点在平面上的射影恰好是线段的中点.

(Ⅰ)求证: 平面

(Ⅱ)若直线与平面所成的角为,求平面与平面所成角(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分14分)已知是函数的一个极值点.

)求

)求函数的单调区间;

)若直线与函数的图象有3个交点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C对边的边长分别是a,b,c.已知c=4,C=
(1)若△ABC的面积等于4 ,求a,b;
(2)若sinB=2sinA,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等差数列中,

(1)求数列的通项公式;

(2)求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+2mx+3m+4,
(1)若f(x)在(﹣∞,1]上单调递减,求m的取值范围;
(2)求f(x)在[0,2]上的最大值g(m).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直线坐标系中,以坐标原点为极点, 轴正半轴为极轴建立极坐标系,直线的参数方程为为参数),曲线的极坐标方程为.

(1)直线的普通方程和曲线的参数方程;

(2)设点上, 处的切线与直线垂直,求的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在等腰三角形ABC中,AB=AC,D为CB延长线上一点,E为BC延长线上一点,且满足AB2=DBCE.

(1)求证:△ADB∽△EAC;
(2)若∠BAC=40°,求∠DAE的度数.

查看答案和解析>>

同步练习册答案