精英家教网 > 高中数学 > 题目详情
过点M(1,2)的直线l与圆C:(x-3)2+(y-4)2=25交于A、B两点,C为圆心,当∠ACB最小时,直线l的方程是(  )
分析:由直线和圆相交的性质可得当∠ACB最小时,直线AB与直线MC垂直,根据两条直线垂直的性质,求得直线l 的斜率,再用点斜式求得直线l 的方程.
解答:解:由于点M(1,2)在圆C:(x-3)2+(y-4)2=25的内部,
由直线AB和圆相交的性质可得,当∠ACB最小时,圆心C到直线AB的距离最大,此时,直线AB与直线MC垂直.
由于直线MC的斜率为
4-2
3-1
=1,则所求直线l的斜率为-1,由点斜式求得直线l的方程是y-2=-1(x-1),即x+y-3=0,
故选C.
点评:本题主要考查直线和圆相交的性质,两条直线垂直的性质,用点斜式求直线的方程,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知动点P与直x=4的距离等于它到定点F(1,0)的距离的2倍,
(1)求动点P的轨迹C的方程;
(2)点M(1,1)在所求轨迹内,且过点M的直线与曲线C交于A、B,当M是线段AB中点时,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)离心率为
3
2
,且过P(
6
2
2
).
(1)求椭圆E的方程;
(2)已知直线l过点M(-
1
2
,0),且与开口朝上,顶点在原点的抛物线C切于第二象限的一点N,直  线l与椭圆E交于A,B两点,与y轴交与D点,若
AB
=λ
AN
BD
BN
,且λ+μ=
5
2
,求抛物线C的标准方程.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年安徽省皖南八校高三第一次联考理科数学试卷 题型:解答题

(本小题满分12分)已知椭圆过点A(a,0),B(0,b)的直

 

线倾斜角为,原点到该直线的距离为.

 

(1)求椭圆的方程;

(2)斜率小于零的直线过点D(1,0)与椭圆交于M,N两点,若求直线MN的方程;

(3)是否存在实数k,使直线交椭圆于P、Q两点,以PQ为直径的圆过点D(1,0)?若存在,求出k的值;若不存在,请说明理由。

 

查看答案和解析>>

科目:高中数学 来源:高考真题 题型:解答题

已知抛物线C:y2=4x的焦点为F,过点K(-1,0)的直l与C相交于A、B两点,点A关于x轴的对称点为D。 (1)证明:点F在直线BD上;
(2)设=,求△BDK的内切圆M的方程。

查看答案和解析>>

科目:高中数学 来源:2013年河南省南阳一中高考数学三模试卷(理科)(解析版) 题型:解答题

椭圆E:=1(a>b>0)离心率为,且过P().
(1)求椭圆E的方程;
(2)已知直线l过点M(-,0),且与开口朝上,顶点在原点的抛物线C切于第二象限的一点N,直  线l与椭圆E交于A,B两点,与y轴交与D点,若=,且λ+μ=,求抛物线C的标准方程.

查看答案和解析>>

同步练习册答案