精英家教网 > 高中数学 > 题目详情
若函数f(x)=x2-ax-a在区间[0,2]上的最大值为1,则实数a等于(  )
A.-1B.1C.2D.-2
B
∵函数f(x)=x2-ax-a的图象为开口向上的抛物线,∴函数的最大值在区间的端点处取得,∵f(0)=-a,f(2)=4-3a,∴,解得a=1,∴选B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知函数y=f(x)是定义在实数集R上的奇函数,且当x∈(-∞,0)时,xf′(x)<f(-x)成立(其中f′(x)是f(x)的导函数),若a=
3
f(
3
)
b=(lg3)f(lg3),c=(log2
1
4
)f(log2
1
4
)
,则a,b,c的大小关系是(  )
A.c>a>bB.c>b>aC.a>b>cD.a>c>b

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设定义域为R的函数f(x)满足:对于任意的实数x,y都有f(x+y)=f(x)+f(y)成立,且当x>0时,f(x)<0恒成立.
(1)判断f(x)的奇偶性及单调性,并对f(x)的奇偶性结论给出证明;
(2)若函数f(x)在[-3,3]上总有f(x)≤6成立,试确定f(1)应满足的条件;
(3)解x的不等式
1
n
f(x2)-f(x)>
1
n
f(ax)-f(a)
(n是一个给定的正整数,a∈R).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若不等式恰有一解,则的最大值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知二次函数y=(x+m)2+k-m2的图象与x轴相交于两个不同的点A(x1,0)、B(x2,0),与y轴的交点为C.设△ABC的外接圆的圆心为点P.
(1)求⊙P与y轴的另一个交点D的坐标;
(2)如果AB恰好为⊙P的直径,且△ABC的面积等于,求m和k的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数f(x)=x2-ax-a在区间[0,2]上的最大值为1,则实数a等于________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知中心在原点,焦点在轴上的椭圆的离心率为,椭圆上异于长轴顶点的任意点与左右两焦点构成的三角形中面积的最大值为.
(1)求椭圆的标准方程;
(2)已知点,连接与椭圆的另一交点记为,若与椭圆相切时不重合,连接与椭圆的另一交点记为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.设 (max{p,q}表示p,q中的较大值,min{p,q}表示p,q中的较小值).记的最小值为A,的最大值为B,则(    )
A.16
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

定义运算:,例如:,则函数的最大值为____________.

查看答案和解析>>

同步练习册答案