精英家教网 > 高中数学 > 题目详情

【题目】定义在(0,+∞)上的函数y=f(x)的反函数为y=f﹣1(x),若g(x)= 为奇函数,则f﹣1(x)=2的解为

【答案】
【解析】解:若g(x)= 为奇函数,

可得当x>0时,﹣x<0,即有g(﹣x)=3﹣x﹣1,

由g(x)为奇函数,可得g(﹣x)=﹣g(x),

则g(x)=f(x)=1﹣3﹣x,x>0,

由定义在(0,+∞)上的函数y=f(x)的反函数为y=f﹣1(x),

且f﹣1(x)=2,

可由f(2)=1﹣3﹣2=

可得f﹣1(x)=2的解为x=

故答案为:

由奇函数的定义,当x>0时,﹣x<0,代入已知解析式,即可得到所求x>0的解析式,再由互为反函数的两函数的自变量和函数值相反,即可得到所求值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图1,菱形ABCD的边长为12,∠BAD=60°,AC与BD交于O点.将菱形ABCD沿对角线AC折起,得到三棱锥B﹣ACD,点M是棱BC的中点,DM=6
(I)求证:平面ODM⊥平面ABC;
(II)求二面角M﹣AD﹣C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}中,a1=1,且a1 , a2 , a4+2成等比数列.
(1)求数列{an}的通项公式及其前n项和Sn
(2)设 ,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,则关于x的方程[f(x)]2﹣f(x)+a=0(a∈R)的实数解的个数不可能是(
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=aexlnx+ ,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x﹣1)+2.
(Ⅰ)求a、b;
(Ⅱ)证明:f(x)>1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos2x﹣sin2x+ ,x∈(0,π).
(1)求f(x)的单调递增区间;
(2)设△ABC为锐角三角形,角A所对边a= ,角B所对边b=5,若f(A)=0,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为 ,且椭圆C上的点到椭圆右焦点F的最小距离为 .
(1)求椭圆C的方程;
(2)过点F且不与坐标轴平行的直线l与椭圆C交于A,B两点,线段AB的中点为M, O为坐标原点,直线 的斜率分别为 若成等差数列,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市需对某环城快速车道进行限速,为了调研该道路车速情况,于某个时段随机对 辆车的速度进行取样,测量的车速制成如下条形图:

经计算:样本的平均值 ,标准差 ,以频率值作为概率的估计值.已知车速过慢与过快都被认为是需矫正速度,现规定车速小于 或车速大于 是需矫正速度.
(1)从该快速车道上所有车辆中任取 个,求该车辆是需矫正速度的概率;
(2)从样本中任取 个车辆,求这 个车辆均是需矫正速度的概率
(3)从该快速车道上所有车辆中任取 个,记其中是需矫正速度的个数为 ,求 的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设D为不等式组 ,表示的平面区域,点B(a,b)为第一象限内一点,若对于区域D内的任一点A(x,y)都有 成立,则a+b的最大值等于(
A.0
B.1
C.2
D.3

查看答案和解析>>

同步练习册答案