精英家教网 > 高中数学 > 题目详情
求下列函数的单调区间:
(1)y=1+2sinx
(2)y=-
1
2
sinx.
考点:正弦函数的图象
专题:三角函数的图像与性质
分析:(1)根据函数y=1+2sinx的单调性与函数y=sinx的单调性一致,再由正弦函数的单调性得出结论.
(2)根据函数y=-
1
2
sinx的单调性与函数y=sinx的单调性相反,再由正弦函数的单调性得出结论.
解答: 解:(1)函数y=1+2sinx的增区间,即y=sinx的增区间,为[2kπ-
π
2
,2kπ+
π
2
],k∈z;
函数y=1+2sinx的减区间,即y=sinx的减区间,为[2kπ+
π
2
,2kπ+
2
],k∈z.
(2)y=-
1
2
sinx的增区间,即y=sinx的减区间,为[2kπ+
π
2
,2kπ+
2
],k∈z;
y=-
1
2
sinx的减区间,即y=sinx的增区间,为[2kπ-
π
2
,2kπ+
π
2
],k∈z.
点评:本题主要考查正弦函数的单调性,体现了转化的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
e1
e2
是两个不平行的向量,实数x、y满足x
e1
+(5-y)
e2
=(y+1)
e1
+x
e2
,则x+y=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设p:f(x)=lnx+2x2+mx+1在(0,+∞)上是递增的,q:m≥-4,则p是q的
 
条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(a-x)ex+b,曲线y=f(x)在点(1,f(1))处的切线方程为ex+y+1-e=0.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)设g(x)=
f(x)
x
,求证:存在x0≠0,使得g(x0)>1-
2
e

查看答案和解析>>

科目:高中数学 来源: 题型:

已知D、E分别是△ABC边AB、AC上的点,且BD=2AD,AE=2EC,点P是线段DE上的任意一点,若
AP
=x
AB
+y
AC
,则xy的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

由于我市去年冬天多次出现重度污染天气,市政府决定从今年3月份开始进行汽车尾气的整治,为降低汽车尾气的排放量,我市某厂生产了甲、乙两种不同型号的节排器,分别从两种节排器中随机抽取100件进行性能质量评估检测,综合得分情况的频率分布直方图如图所示.
节排器等级如表格所示
综合得分K的范围节排器等级
K≥85一级品
75≤k<85二级品
70≤k<75三级品
若把频率分布直方图中的频率视为概率,则
(1)如果从甲型号中按节排器等级用分层抽样的方法抽取10件,然后从这10件中随机抽取3件,求至少有2件一级品的概率;
(2)如果从乙型号的节排器中随机抽取3件,求其二级品数X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,
OA
OB
OC
在同一平面内,∠AOB=∠BOC=∠COA=120°,且|
OA
|=|
OB
|=|
OC
|,求
OA
+
OB
+
OC

查看答案和解析>>

科目:高中数学 来源: 题型:

一条渔船距对岸4km,以2km/h的速度向垂直于对岸的方向花去,到达对岸时船的实际航程为8km,求河水的流速.

查看答案和解析>>

科目:高中数学 来源: 题型:

过双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左焦点F1,作圆x2+y2=a2的切线交双曲线右支于点P,切点为T,PF1的中点M在第一象限,则以下结论正确的是(  )
A、b-a=|MO|-|MT|
B、b-a>|MO|-|MT|
C、b-a<|MO|-|MT|
D、b-a=|MO|+|MT|

查看答案和解析>>

同步练习册答案