精英家教网 > 高中数学 > 题目详情
精英家教网如图,已知四棱锥P-ABCD的底面的菱形,∠BCD=60°,点E是BC边的中点,AC与DE交于点O,PO⊥平面ABCD,
(1)求证:PD⊥BC;
(2)若AB=6
3
,PC=6
2
,求二面角P-AD-C的大小;
(3)在(2)的条件下,求异面直线PB与DE所成角的余弦值.
分析:(1)连接DB,DE⊥BC而PO⊥平面ABCD,则OD是斜边PD在底面ABCD内的射影,根据三垂线定理可知PD⊥BC;
(2)根据二面角平面角的定义可知∠PDO为二面角P-AD-C的平面角,在Rt△POD中,求出∠PDO即可;
(3)取AD中点H,连接HB,HP则HB∥DE,HB与PB所成的角既是DE与PBD所成角,连接OH,OB,在Rt△DOH中,求出OH,在Rt△PHO中,求出PH,在Rt△POB中,求出PB,设HB与PB所成角为α,利用余弦定理可求出此角.
解答:精英家教网解:(1)证明:在菱形ABCD中,连接DB则△BCD是等边三角形.
点E是BC边的中点
∴DE⊥BC
∵PO⊥平面ABCD
∴OD是斜边PD在底面ABCD内的射
∴PD⊥BC

(2)解:由(1)知DE⊥BC
菱形ABCD中AD∥BC∴DE⊥AD有∵PO⊥平面ABCD
DE是PD在平面ABCD的射影
∴PD⊥AD
∴PDO为二面角P-AD-C的平面角
菱形ABCD中,AD⊥DE
由(1)知△BCD为等边三角形
∵点E是BC边的中点AC与BD互相平分
∴点O是△BCD重心∵AB=
63
又∵在等边△BCD中,
DO=
2
3
DE=
2
3
3
2
BC=
3
3
63
=6

∴OC=OD=6∵PC=
62
∴PO=6

∴在Rt△POD中,tan∠PDO=
PO
DO
=
6
6
=1
∠PDO=
π
4

∴二面角P-AD-C的大小为
π
4


(3)解:取AD中点H,连接HB,HP则HB∥DE
∴HB与PB所成的角既是DE与PBD所成角
连接OH,OB
∵PO⊥平面ABCD,OH,OB?平面ABCD
∴PO⊥OH,PO⊥OB
在Rt△DOH中,HD=3
3
OD=6
OH=3
7

在Rt△PHO中,PH=
PO2+OH2
=
99

在Rt△POB中,OB=OC=6,PB=
PO2+OB2
=6
2

由(2)可知DE=HB=9
设HB与PB所成角为α
则cosα=
HB2+PB2-PH2
2HBPB
=
2
4

异面直线PB,DE所成角的余弦值为
2
4
点评:求二面角,关键是构造出二面角的平面角,常用的方法有利用三垂线定理和通过求法向量的夹角,然后再将其转化为二面角的平面角.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图:已知四棱锥P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中点,
求证:
(1)PC∥平面EBD.
(2)平面PBC⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别是BC、PC的中点.
(1)证明:AE⊥PD;
(2)设AB=2,若H为线段PD上的动点,EH与平面PAD所成的最大角的正切值为
6
2
,求AP的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD的底面为菱形,∠BCD=60°,PD⊥AD.点E是BC边上的中点.
(1)求证:AD⊥面PDE;
(2)若二面角P-AD-C的大小等于60°,且AB=4,PD=
8
3
3
;①求VP-ABED; ②求二面角P-AB-C大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•崇明县二模)如图,已知四棱锥P-ABCD的底面ABCD为正方形,PA⊥平面ABCD,E、F分别是BC,PC的中点,AB=2,AP=2.
(1)求证:BD⊥平面PAC;
(2)求二面角E-AF-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•吉林二模)如图,已知四棱锥P-ABCD的底面是正方形,PA⊥面ABCD,且PA=AD=2,点M,N分别在PD,PC上,
PN
=
1
2
NC
,PM=MD.
(Ⅰ) 求证:PC⊥面AMN;
(Ⅱ)求二面角B-AN-M的余弦值.

查看答案和解析>>

同步练习册答案