精英家教网 > 高中数学 > 题目详情
5.如图,在三棱锥A-BCD中,底面BCD是边长为2的等边三角形,侧棱AB=AD=$\sqrt{2}$,AC=2,O、E、F分别是BD、BC、AC的中点.
(1)求证:EF∥平面ABD;
(2)求证:AO⊥平面BCD;
(3)求异面直线AB与CD所成角的余弦值.

分析 (1)推导出EF∥AB,由此能证明EF∥平面ABD.
(2)推导出AO⊥BD,AO⊥OC,由此能证明AO⊥平面BCD.
(3)连接OE,则∠OEF(或其补角)为异面直线AB与CD所成角,由此能求出异面直线AB与CD所成角的余弦值.

解答 证明:(1)∵E、F分别是BC、AC的中点,
∴EF∥AB,
∵EF?平面ABD,AB?平面ABD,
∴EF∥平面ABD.(3分)
(2)∵底面BCD是边长为2的等边三角形,O是BD的中点,
∴AO⊥BD①
又AO=1,AC=2,OC=$\sqrt{3}$,∴AO2+OC2=AC2
故AO⊥OC②,又OC∩BD=O,③
由①②③得AO⊥平面BCD.(7分)
解:(3)连接OE,则∠OEF(或其补角)为异面直线AB与CD所成角,
由(1)知,在Rt△AOC中,OF=$\frac{1}{2}$AC=1,
又EF=$\frac{1}{2}$AB=$\frac{\sqrt{2}}{2}$,OE=$\frac{1}{2}$DC=1
在△EOF中,由余弦定理得到:
cos∠OEF=$\frac{1+\frac{1}{2}-1}{2×1×\frac{1}{2}}$=$\frac{\sqrt{2}}{4}$.
∴异面直线AB与CD所成角的余弦值为$\frac{\sqrt{2}}{4}$.(12分)

点评 本题考查线面平行、线面垂直的证明,考查异面直线所成角的大小的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.求函数y=$\frac{lg(4-x)}{\sqrt{{x}^{2}-2x-3}}$的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图所示,在?ABCD中,E为CD上一点,DE:CE=2:3,连接AE,BE,BD,且AE,BD交与点F,则S△DEF:S△EBF:S△ABF等于(  )
A.4:10:25B.4:9:25C.2:3:5D.2:5:25

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在空间直角坐标系中,点(1,2,3)关于平面xoy对称的点坐标是(1,2,-3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆E的两个焦点分别为(0,-1)和(0,1),离心率e=$\frac{\sqrt{2}}{2}$
(1)求椭圆E的方程
(2)若直线l:y=kx+m(k≠0)与椭圆E交于不同的两点A、B,且线段AB的垂直平分线过定点P(0,$\frac{1}{2}$),求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{2mx-{m}^{2}+1}{{x}^{2}+1}$(x∈R).
(1)当m=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(2)当m=2时,求函数f(x)的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.曲线y=x2+1在P($\frac{1}{2}$,$\frac{5}{4}$)处的切线的倾斜角为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知全集U=R,A={x|-2<x<0},B={x|-1<x<3},求:
(1)A∪B
(2)A∩B
(3)(∁UA)∩(∁UB)
(4)(∁UA)∪(∁UB)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设f(x)=$\left\{\begin{array}{l}{x-2,(x≥10)}\\{f(x+6),(1≤x<10)}\end{array}\right.$则使f(x)=11成立的实数x的集合为{1,7,13}.

查看答案和解析>>

同步练习册答案