精英家教网 > 高中数学 > 题目详情
若函数f(x)=x3-3bx+b在区间(0,1)内有极小值,则b应满足的条件是
 
分析:首先求出函数的导数,然后令导数为零,求出函数的极值,最后确定b的范围.
解答:解:由题意得f′(x)=3x2-3b,
令f′(x)=0,则x=±
b

又∵函数f(x)=x3-3bx+b在区间(0,1)内有极小值,
∴0<
b
<1,
∴b∈(0,1),
故答案为(0,1).
点评:熟练运用函数的导数求解函数的极值问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)=x3+
1
x
,则
 
lim
△x→0
f(△x-1)+f(1)
2△x
等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x3+3x-1,x∈[-1,l],则下列判断正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x3+3mx2+nx+m2为奇函数,则实数m的值为
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x3-3bx+b在区间(0,1)内有极小值,则b的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x3-3x+1在闭区间[-3,0]上的最大值,最小值分别为M,m,则M+m=
-14
-14

查看答案和解析>>

同步练习册答案