精英家教网 > 高中数学 > 题目详情
(1)化简(
a
a+b
-
a2
a2+2ab+b2
)÷(
a
a+b
-
a2
a2-b2
)

(2)计算
1
2
lg25+lg2-lg
0.1
-log29×log32

(3)
-1
=i
,验算i是否方程2x4+3x3-3x2+3x-5=0的解;
(4)求证:
sin(
π
4
+θ)
sin(
π
4
-θ)
+
cos(
π
4
+θ)
cos(
π
4
-θ)
=
2
cos2θ
分析:(1)利用平方和公式、同分,然后化简即可.
(2)利用对数的运算性质,化简即可.
(3)把i代入方程验证即可.
(4)三角方程的左边利用诱导公式化简即可.
解答:解:(1)原式=
a
a+b
(1-
a
a+b
)
a
a+b
(1-
a
a-b
)
=
b-a
a+b

(2)
1
2
lg25+lg2-lg
0.1
-log29×log32
=lg5+lg2+
1
2
-2log23×log32
=-
1
2


(3)令x=i,左边=2-3i+3+3i-5=0,所以i是所给方程的一个解.

(4)证:左边=
sin(
π
4
+θ)cos(
π
4
-θ)+cos(
π
4
+θ)sin(
π
4
-θ)
sin(
π
4
-θ)cos(
π
4
-θ)

=
sin
π
2
sin(
π
4
-θ)cos(
π
4
-θ)

=
1
1
2
cos2θ

=
2
cos2θ

=右边.
点评:本题考查对数的运算性质,复数的基本概念,三角函数恒等式的证明,考查计算能力,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)化简(
a
a+b
-
a2
a2+2ab+b2
)÷(
a
a+b
-
a2
a2-b2
)

(2)解不等式
2x-1
3
3x-1
2
-4

(3)解方程
4
x+3
-
1
x-3
=1-
2x
x2-9

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各个面都是平行四边形的四棱柱ABCD-A′B′C′D′
(1)化简
1
2
AA′
+
BC
+
2
3
AB
,并在图形中标出其结果;
(2)设M是底面ABCD的中心,N是侧面BCC′B′的对角线BC′上的点,且BN:NC′=3:1,设
MN
AB
AD
AA′
,试求α,β,γ的值.

查看答案和解析>>

科目:高中数学 来源:上海 题型:解答题

(1)化简(
a
a+b
-
a2
a2+2ab+b2
)÷(
a
a+b
-
a2
a2-b2
)

(2)计算
1
2
lg25+lg2-lg
0.1
-log29×log32

(3)
-1
=i
,验算i是否方程2x4+3x3-3x2+3x-5=0的解;
(4)求证:
sin(
π
4
+θ)
sin(
π
4
-θ)
+
cos(
π
4
+θ)
cos(
π
4
-θ)
=
2
cos2θ

查看答案和解析>>

科目:高中数学 来源:上海 题型:解答题

(1)化简(
a
a+b
-
a2
a2+2ab+b2
)÷(
a
a+b
-
a2
a2-b2
)

(2)解不等式
2x-1
3
3x-1
2
-4

(3)解方程
4
x+3
-
1
x-3
=1-
2x
x2-9

查看答案和解析>>

同步练习册答案