精英家教网 > 高中数学 > 题目详情

【题目】已知数列的前项和为,且.

1)求证:数列是等差数列;

2)设,求.

【答案】1)证明见解析;(2.

【解析】

1)可采用作差法由an=SnSn1求得an=2an1+2n1,再由bn,表示出bn+1bn,故得证数列是首项为,公差为的等差数列;

2)由(1)所求bn通项公式反解出an=(n+2)2n1,化简得Sn= (n+1)2n1,结合错位相减法即可求解;

1Sn=2an2n1,可得a1=S1=2a121,即有a1=3 n≥2时,an=SnSn1=2an2n12an1+2n1+1,可得an=2an1+2n1,由bn,可得bn+1bn

则数列{bn}是首项为,公差为的等差数列;

2)由(1)可得bn(n1),即an=(n+2)2n1 Sn=2an2n1=(n+1)2n1 Tn=S1+S2+…+Sn=22+34+48+…+(n+1)2nn 2Tn=24+38+416+…+(n+1)2n+12n,相减可得﹣Tn=4+4+8+16+…+2n(n+1)2n+1+n=2(n+1)2n+1+n,化简可得Tn=n2n+1n.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,椭圆C:(a>b>0)的离心率为,其左焦点到点P(2,1)的距离为不过原点O的直线l与C相交于A,B两点,且线段AB被直线OP平分

(Ⅰ)求椭圆C的方程;

() 求ABP的面积取最大时直线l的方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图甲,在直角梯形中,,过,垂足为,现将沿折叠,使得.取的中点,连接,如图乙.

(1)求证:平面

(2)求二面角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了解广告投入对销售收益的影响,在若干地区各投入万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从开始计数的. [附:回归直线的斜率和截距的最小二乘估计公式分别为.]

(1)根据频率分布直方图计算图中各小长方形的宽度;

(2)试估计该公司投入万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);

(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:

广告投入 (单位:万元)

1

2

3

4

5

销售收益 (单位:万元)

2

3

2

7

由表中的数据显示, 之间存在着线性相关关系,请将(2)的结果填入空白栏,并求出关于的回归直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】食品安全问题越来越引起人们的重视,农药、化肥的滥用对人民群众的健康带来一定的危害,为了给消费者带来放心的蔬菜,某农村合作社每年投入200万元,搭建了甲、乙两个无公害蔬菜大棚,每个大棚至少要投入20万元,其中甲大棚种西红柿,乙大棚种黄瓜,根据以往的种菜经验,发现种西红柿的年收入种黄瓜的年收入与投入(单位:万元)满足.设甲大棚的投入为(单位:万元),每年两个大棚的总收益为(单位:万元)

1)求的值;

2)试问如何安排甲、乙两个大棚的投入,才能使总收益最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】命题:已知实数,若关于不等式非空解集,则写出该命题的逆命题否命题、逆否命题,并判断这些命题的真假.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若函数的图象在点处的切线的倾斜角为,求上的最小值;

2)若存在,使,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,以椭圆的上焦点为圆心,椭圆的短半轴为半径的圆与直线截得的弦长为.

(1)求椭圆的方程;

(2)过椭圆左顶点做两条互相垂直的直线,且分别交椭圆于两点(不是椭圆的顶点),探究直线是否过定点,若过定点则求出定点坐标,否则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直棱柱中,分别是的中点,

1)证明:平面

2)求二面角的正弦值.

查看答案和解析>>

同步练习册答案