精英家教网 > 高中数学 > 题目详情

已知数列为等差数列,其公差d不为0,的等差中项为11,且,令,数列的前n项和为.
(1)求
(2)是否存在正整数m,n(1<m<n),使得成等比数列?若存在,求出所有的m,n的值;若不存在,请说明理由.

(1);(2).

解析试题分析:本题主要考查等差数列、等比数列的定义、通项公式、性质以及裂项相消法求和等数学知识,考查学生的分析问题解决问题的能力和计算能力.第一问,先利用等差中项的概念将的等差中项为11,转化为,与已知联立,利用等差数列的通项公式展开,解方程组得出基本量,从而求出等差数列的通项公式,将代入到中,利用裂项相消法求和;第二问,先假设存在m和n,利用已知看能不能求出m和n的值,利用第一问的结论,得出的值,由已知成等比数列,则,整理得到关于m,n的方程,通过解方程得出m和n的值.
试题解析:(Ⅰ)因为为等差数列,公差为,则由题意得

整理得
所以     3分

所以     6分
(Ⅱ)假设存在
由(Ⅰ)知,,所以
成等比,则有
   8分
,(1)
因为,所以,     10分
因为,当时,代入(1)式,得
综上,当可以使成等比数列。     12分
考点:1.等差数列的通项公式;2.等差中项;3.等比数列的定义;4.裂项相消法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知首项为的等比数列不是递减数列,其前n项和为,且成等差数列。
(1)求数列的通项公式;
(2)设,求数列的最大项的值与最小项的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

从数列中抽出一些项,依原来的顺序组成的新数列叫数列的一个子列.
(1)写出数列的一个是等比数列的子列;
(2)若是无穷等比数列,首项,公比,则数列是否存在一个子列
为无穷等差数列?若存在,写出该子列的通项公式;若不存在,证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设等差数列的公差为,且.若设是从开始的前项数列的和,即,如此下去,其中数列是从第开始到第)项为止的数列的和,即
(1)若数列,试找出一组满足条件的,使得:
(2)试证明对于数列,一定可通过适当的划分,使所得的数列中的各数都为平方数;
(3)若等差数列.试探索该数列中是否存在无穷整数数列
,使得为等比数列,如存在,就求出数列;如不存在,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为等差数列的前项和,.
⑴求
⑵求
⑶求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设各项均为正数的数列的前n项和为Sn,已知,且对一切都成立.
(1)若λ=1,求数列的通项公式;
(2)求λ的值,使数列是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列{}的前n项和为Sn,公差d≠0,且S3=9,a1,a3,a7成等比数列.
(1)求数列{}的通项公式;
(2)设,求数列{}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}的首项为a1=1,其前n项和为Sn,且对任意正整数n有n,an,Sn成等差数列.
(1)求证:数列{Sn+n+2}成等比数列.
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列an求a1+a2+a3+a4+…+a99+a100的值.

查看答案和解析>>

同步练习册答案