精英家教网 > 高中数学 > 题目详情
设函数f(x)在R上的导函数为f′(x),且2f(x)+xf′(x)<0,下面的不等式在R上恒成立的是(  )
A、f(x)>0B、f(x)<0C、f(x)>xD、f(x)<x
分析:对于这类参数取值问题,针对这些没有固定套路解决的选择题,最好的办法就是排除法.
解答:解:∵2f(x)+xf′(x)<0,
令x=0,则f(x)<0,故可排除A,C.
如果 f(x)=x+0.1时 已知条件 2f(x)+xf′(x)<0成立,
但f(x)<x 未必成立,所以D也是错的,
故选:B.
点评:本题考查了运用导数来解决函数单调性的问题.通过分析解析式的特点,考查了分析问题和解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)在R上满足f(3+x)=f(3-x),f(8+x)=f(8-x),且在闭区间[0,8]上只有f(1)=f(5)=f(7)=0.
(1)求证函数f(x)是周期函数;
(2)求函数f(x)在闭区间[-10,0]上的所有零点;
(3)求函数f(x)在闭区间[-2012,2012]上的零点个数及所有零点的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•重庆)设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•保定一模)设函数f(x)在R上是可导的偶函数,且满足f (x-1)=-f (x+1),则曲线y=f (x)在点x=10处的切线的斜率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)在R上的导函数为f′(x),若2f(x)+x?f′(x)<0恒成立,下列说法正确的是(  )
A、函数x2f(x)有最小值0B、函数x2f(x)有最大值0C、函数x2f(x)在R上是增函数D、函数x2f(x)在R上是减函数

查看答案和解析>>

同步练习册答案