分析 (1)连结BD交AC于O,连结OM,则OM∥PB,由此能证明PB∥平面ACM.
(2)取AB中点N,连结PN,则PN⊥平面ABCD,由VP-AMC=VP-ACD=VM-ACD,能求出三棱锥P-AMC的体积.
解答 证明:(1)连结BD交AC于O,连结OM,
因为ABCD为菱形,OB=OD,所以OM∥PB.
因为直线PB?平面AMC,OM?平面AMC,
所以PB∥平面ACM.
解:(2)取AB中点N,连结PN,则PN⊥AB,且PN=$\frac{\sqrt{3}}{2}a$,
因为平面PAB⊥平面ABCD,所以PN⊥平面ABCD,
所以${V}_{P-ACD}=\frac{1}{3}×\frac{1}{2}{a}^{2}×\frac{\sqrt{3}}{2}×\frac{\sqrt{3}}{2}a$=$\frac{1}{8}{a}^{3}$,${V}_{M-ACD}=\frac{1}{3}×\frac{1}{2}{a}^{2}×\frac{\sqrt{3}}{2}×\frac{\sqrt{3}}{4}a$=$\frac{1}{16}{a}^{3}$,
所以${V_{P-AMC}}={V_{P-ACD}}={V_{M-ACD}}=\frac{1}{8}{a^3}-\frac{1}{16}{a^3}=\frac{1}{16}{a^3}$.
点评 本题考查线面平行的证明,考查三棱锥的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | c<a<b | B. | c<b<a | C. | b<a<c | D. | a<b<c |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 4$\sqrt{2}$ | B. | 3+$\sqrt{5}$ | C. | $\sqrt{2}$+1 | D. | 3+2$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (2,+∞) | B. | (0,1) | C. | (1,+∞) | D. | (0,ln2) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com