精英家教网 > 高中数学 > 题目详情

已知数列{an}中,数学公式,试求数列{an}的前n项之和Sn

解:(1)当n为奇数时,其中有项为偶数项,项为奇数项,(1分)
偶数项是以b1=9为首项,q=32=9 的等比数列,
故偶数项的和 (5分)
奇数项是以c1=2×1-1=1 为首项,d=2×2=4 为公差的等差数列,
故奇数项的和,(7分)
则{an}的前n项之和(n为奇数) (8分)
(2)当n为偶数时,其中有项为偶数项,为奇数项,(9分)
故偶数项的和,(11分)
奇数项的和,(12分)
则{an}的前n项之和-(n为偶数). (14分)
分析:首先对n进行奇偶数讨论,(1)当n为奇数时,其中有项为偶数项,项为奇数项,则知偶数项是以b1=9为首项,q=32=9 的等比数列,奇数项是以c1=2×1-1=1 为首项,d=2×2=4 为公差的等差数列,根据等差数列和等比数列的求和公式即可求出数列{an}的前n项之和Sn,(2)当当n为偶数时,其中有项为偶数项,为奇数项,直接根据等比数列和等差数列求和公式求出数列{an}的前n项之和Sn
点评:本题主要考查数列的求和的知识点,解答本题的关键是对n进行奇偶数分类讨论,还要熟练掌握等差、等比数列的性质和求和公式,本题难度一般.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1-an=
1
3n+1
(n∈N*)
,则
lim
n→∞
an
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1=
an
1+2an
,则{an}的通项公式an=
1
2n-1
1
2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,a1+2a2+3a3+…+nan=
n+1
2
an+1(n∈N*)

(1)求数列{an}的通项公式;
(2)求数列{
2n
an
}
的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=
1
2
Sn
为数列的前n项和,且Sn
1
an
的一个等比中项为n(n∈N*
),则
lim
n→∞
Sn
=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为(  )
A、
n
2n
B、
n
2n-1
C、
n
2n-1
D、
n+1
2n

查看答案和解析>>

同步练习册答案