精英家教网 > 高中数学 > 题目详情

【题目】给出下列四个结论:
①已知X服从正态分布N(0,σ2),且P(﹣2≤X≤2)=0.6,则P(X>2)=0.2;
②若命题 ,则¬p:x∈(﹣∞,1),x2﹣x﹣1≥0;
③已知直线l1:ax+3y﹣1=0,l2:x+by+1=0,则l1⊥l2的充要条件是
其中正确的结论的个数为( )
A.0
B.1
C.2
D.3

【答案】B
【解析】解:对于①,已知X服从正态分布N(0,σ2),可得正态曲线关于y轴对称,当P(﹣2≤X≤2)=0.6时,则P(X>2)=0.2,正确;
对于②,若命题 ,则¬p:x∈[1,+∞),x2﹣x﹣1≥0,故错;
对于③,当a=b=0时,l1⊥l2 , 故错,
故选:B
【考点精析】解答此题的关键在于理解命题的真假判断与应用的相关知识,掌握两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,,且.

(1)证明:平面平面

(2)若,二面角的大小为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在区间上的函数

(1)判定函数的单调性,并用定义证明;

(2)设方程有四个不相等的实根

①证明:

②在是否存在实数,使得函数在区间单调,且的取值范围为,若存在,求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数满足,且.

(1)求的解析式;

(2)当时,不等式有解,求实数的取值范围;

(3)设,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l的参数方程为 (t为参数)若以O点为极点,x轴正半轴为极轴建立极坐标系,则曲线C的极坐标方程为ρ=4cos θ.
(1)求曲线C的直角坐标方程及直线l的普通方程;
(2)将曲线C上各点的横坐标缩短为原来的 ,再将所得曲线向左平移1个单位,得到曲线C1 , 求曲线C1上的点到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校共有15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时)

(1)应收集多少位女生样本数据?

(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据分组区间为:.估计该校学生每周平均体育运动时间超过4个小时的概率.

(3)在样本数据中,有60位女生的每周平均体育运动时间超过4个小时.请完成每周平均体育运动时间与性别的列联表,并判断是否有的把握认为该校学生的每周平均体育运动时间与性别有关.

附:

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且2ccosB=2a+b,若△ABC的面积为S= c,则ab的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(a﹣bx3)ex ,且函数f(x)的图象在点(1,e)处的切线与直线x﹣(2e+1)y﹣3=0垂直.
(Ⅰ)求a,b;
(Ⅱ)求证:当x∈(0,1)时,f(x)>2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,函数.

(1) 若,求曲线处的切线方程;

(2)求函数单调区间

(3) 若有两个零点,求证: .

查看答案和解析>>

同步练习册答案