精英家教网 > 高中数学 > 题目详情

【题目】已知函数 .
(1)讨论 的单调性;
(2)若 有两个零点,求a的取值范围.

【答案】
(1)解:
时, ,所以 上为减函数
时, ,则
则: 上为减函数, 上为增函数
(2)解: 即可,
,令 上为减函数
又因为: ,所以 ,所以 , 所以:a的取值范围为 .
【解析】(1)通过求导,对参数a进行讨论研究函数的单调性;
(2)由(1)得知函数有极小值时才可能出现两个零点,且极小值必小于0,结合函数单调性求得a的范围.
【考点精析】掌握利用导数研究函数的单调性是解答本题的根本,需要知道一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在空间直角坐标系O﹣xyz中,已知A(2,0,0),B(0,2,0),C(0,0,0),P(0,1, ),则三棱锥P﹣ABC在坐标平面xOz上的正投影图形的面积为;该三棱锥的最长棱的棱长为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,若 ,且 对任意的 恒成立,则 的最大值为( )
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个命题中,真命题有 . (写出所有真命题的序号)
①若a,b,c∈R,则“ac2>bc2”是“a>b”成立的充分不必要条件;②命题“x0∈R, +x0+1<0”的否定是“x∈R,x2+x+1≥0”;③命题“若|x|≥2,则x≥2或x≤-2”的否命题是“若|x|<2,则-2<x<2”;④函数f(x)=ln x+x- 在区间(1,2)上有且仅有一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆 经过 为坐标原点,线段 的中点在圆 上.
(1)求 的方程;
(2)直线 不过曲线 的右焦点 ,与 交于 两点,且 与圆 相切,切点在第一象限, 的周长是否为定值?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若定义在R上的偶函数f(x)满足f(x+2)=f(x),且当x∈[0,1]时,f(x)=x,则函数y=f(x)-log3|x|的零点个数是( )
A.多于4个
B.4个
C.3个
D.2个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】候鸟每年都要随季节的变化而进行大规模地迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度v(单位:m/s)与其耗氧量Q之间的关系为:v=a+blog3 (其中a,b是实数).据统计,该种鸟类在静止的时候其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1 m/s.
(1)求出a,b的值;
(2)若这种鸟类为赶路程,飞行的速度不能低于2 m/s,则其耗氧量至少要多少个单位?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设甲、乙两人每次射击命中目标的概率分别为 ,且各次射击相互独立,若按甲、乙、甲、乙…的次序轮流射击,直到有一人击中目标就停止射击,则停止射击时,甲射击了两次的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.
(1)证明:MN∥平面PAB;
(2)求直线AN与平面PMN所成角的正弦值.

查看答案和解析>>

同步练习册答案