精英家教网 > 高中数学 > 题目详情

【题目】已知圆,考虑下列命题:①圆上的点到的距离的最小值为;②圆上存在点到点的距离与到直线的距离相等;③已知点,在圆上存在一点,使得以为直径的圆与直线相切,其中真命题的个数为( )

A. 0 B. 1 C. 2 D. 3

【答案】C

【解析】对于①,圆心的距离减去半径的值为 即圆上点到的距离的最小值为,①对于②,到点与到直线的距离相等的点的轨迹是抛物线 方程可得圆与抛物线有两个交点,故正确对于,当上存在点使得以为直径的圆与直线相切正确,正确命题个数为故选C.

方法点睛】本题主要通过对多个命题真假的判断,主要综合考查圆的几何性质抛物线的定义与方程属于难题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题尽量挖掘出题目中的隐含条件,判断存在性结论时,也可以考虑特值法处理,另外要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】随着“互联网+交通”模式的迅猛发展,“共享自行车”在很多城市相继出现.某运营公司为了了解某地区用户对其所提供的服务的满意度,随机调查了40个用户,得到用户的满意度评分如下:

用系统抽样法从40名用户中抽取容量为10的样本,且在第一分段里随机抽到的评分数据为92.

(1)请你列出抽到的10个样本的评分数据;

(2)计算所抽到的10个样本的均值和方差

(3)在(2)条件下,若用户的满意度评分在之间,则满意度等级为“级”.试应用样本估计总体的思想,估计该地区满意度等级为“级”的用户所占的百分比是多少?(精确到)

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,直线AMBM相交于点M,且直线AM的斜率与直线BM的斜率的差是,则点M的轨迹C的方程是___________.若点为轨迹C的焦点,是直线上的一点,是直线与轨迹的一个交点,且,则_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数在区间上的单调性;

(2)已知函数,若,且函数在区间内有零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名高三学生平均每天课外体育锻炼时间进行调查,如表:(平均每天锻炼的时间单位:分钟)

平均每天锻炼的时间/分钟

总人数

20

36

44

50

40

10

将学生日均课外体育锻炼时间在的学生评价为“课外体育达标”.

(1)请根据上述表格中的统计数据填写下面的列联表;

课外体育不达标

课外体育达标

合计

20

110

合计

(2)通过计算判断是否能在犯错误的概率不超过的前提下认为“课外体育达标”性别有关?

参考公式,其中

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:千元)对年销售量(单位:)和年利润(单位:千元)的影响,对近13年的宣传费和年销售量 数据作了初步处理得到下面的散点图及一些统计量的值

由散点图知建立关于的回归方程是合理的经计算得如下数据

10.15

109.94

0.16

-2.10

0.21

21.22

(1)根据以上信息,建立关于的回归方程

(2)已知这种产品的年利润的关系为根据(1)的结果,求当年宣传费年利润的预报值是多少

对于一组数据其回归直线的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若以为左右焦点的椭圆经过点.

(1)求的标准方程

(2)设过右焦点且斜率为的动直线与相交于两点探究在轴上是否存在定点使得为定值若存在试求出定值和点的坐标若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

(1)若处取到极小值,求的值及函数的单调区间;

(2)若当时, 恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的方程是,曲线的参数方程是为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系.

(1)求直线与曲线的极坐标方程;

(2)若射线与曲线交于点,与直线交于点,求的取值范围.

查看答案和解析>>

同步练习册答案