精英家教网 > 高中数学 > 题目详情
(2010•石家庄二模)已知O为坐标原点,点M(3,2),若N(x,y)满足不等式组 
x≤y
x≥1
x+y≤4
,则
OM
ON
的最大值为
10
10
分析:先根据约束条件画出可行域,由于
OM
ON
=(3,2)•(x,y)=3x+2y,设z=3x+2y,再利用z的几何意义求最值,只需求出直线z=3x+2y过可行域内的点A时,z最大即可.
解答:解:先根据约束条件画出可行域,
OM
ON
=(3,2)•(x,y)=3x+2y,
设z=3x+2y,
将最大值转化为y轴上的截距最大,
x=y
x+y=4
得A(2,2),
当直线z=3x+2y经过交点A(2,2)时,z最大,
最大为:10.
故答案为:10.
点评:本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.巧妙识别目标函数的几何意义是我们研究规划问题的基础,纵观目标函数包括线性的与非线性,非线性问题的介入是线性规划问题的拓展与延伸,使得规划问题得以深化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•石家庄二模)已知定义域为R的函数f(x)在(1,+∞)上为减函数,且函数y=f(x+1)为偶函数,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•石家庄二模)若函数y=f(x)的图象如图①所示,则图②对应函数的解析式可以表示为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•石家庄二模)已知△ABC中,内角A、B、C的对边的边长为a、b、c,且bcosC=(2a-c)cosB.
(Ⅰ)求角B的大小;
(Ⅱ)若y=cos2A+cos2C,求y的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•石家庄二模)已知动圆M经过点G(0,-1),且与圆Q:x2+(y-1)2=8内切.
(Ⅰ)求动圆M的圆心的轨迹E的方程.
(Ⅱ)以m=(1,
2
)
为方向向量的直线l交曲线E于不同的两点A、B,在曲线E上是否存在点P使四边形OAPB为平行四边形(O为坐标原点).若存在,求出所有的P点的坐标与直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•石家庄二模)如图,已知全集为U,A,B是U的两个子集,则阴影部分所表示的集合是(  )

查看答案和解析>>

同步练习册答案