精英家教网 > 高中数学 > 题目详情
10.为了研究某学科成绩是否与学生性别有关,采用分层抽样的方法,从高二年级抽取了30名男生和20名女生的该学科成绩,得到如图所示男生成绩的频率分布直方图和女生成绩的茎叶图,规定80分以上为优分(含80分).

(Ⅰ)(i)请根据图示,将2×2列联表补充完整;
优分非优分总计
男生
女生
总计50
(ii)据列联表判断,能否在犯错误概率不超过10%的前提下认为“学科成绩与性别有关”?
(Ⅱ)将频率视作概率,从高二年级该学科成绩中任意抽取3名学生的成绩,求成绩为优分人数X的分布列与数学期望.
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$(n=a+b+c+d).
参考数据:
P(K2≥k00.1000.0500.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828

分析 (Ⅰ)列出2×2列联表,计算k2的值,判断即可;(Ⅱ)根据优分人数X服从二项分布$B(3,\frac{2}{5})$,求出E(x)即可.

解答 解:(Ⅰ)根据图示,将2×2列联表补充完整如下:

优分非优分总计
男生92130
女生11920
总计203050
K2的观测值:$k=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}=\frac{{50×{{(9×9-11×21)}^2}}}{20×30×20×30}=3.125>2.706$,
所以能在犯错误概率不超过10%的前提下认为该学科成绩与性别有关;  
(Ⅱ)由于有较大的把握认为该学科成绩与性别有关,
因此可将男女生成绩的优分频率$f=\frac{20}{50}=\frac{2}{5}$视作概率;
从高二年级中任意抽取3名学生的该学科成绩中,
优分人数X服从二项分布$B(3,\frac{2}{5})$,
P(X=k)=$C_3^k{(\frac{2}{5})^k}{(\frac{3}{5})^{3-k}},k=0,1,2,3$
X012…(10分)
3
p$\frac{27}{125}$$\frac{54}{125}$$\frac{36}{125}$$\frac{8}{125}$
X的分布列为:数学期望$E(X)=3×\frac{2}{5}=\frac{6}{5}$.

点评 本题考查了2×2列联表,考查二项分布和数学期望,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.“一条直线l与平面α内无数条直线异面”是“这条直线与平面α平行”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.直线$x-\sqrt{3}y-2=0$的倾斜角为$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某校拟从高一年级、高二年级、高三年级学生中抽取一定比例的学生调查对“荆马”(荆门国际马拉松)的了解情况,则最合理的抽样方法是(  )
A.抽签法B.系统抽样法C.分层抽样法D.随机数法

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.由计算机产生2n个0~1之间的均匀随机数x1,x2,…xn,y1,y2,…yn,构成n个数对(x1,y1),(x2y2),…(xn,yn)其中两数能与1构成钝角三角形三边的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为$\frac{4m}{n}+2$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知直线ax+y-1=0与圆x2+y2-2x-8y+13=0交于A,B两点.若|AB|=2$\sqrt{3}$,则实数a的值是(  )
A.-$\frac{4}{3}$B.-$\frac{3}{4}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若在圆(x-3)2+(y-4)2=r2(r>0)上存在着两个不同的点P,Q,使得|OP|=|OQ|=1(O为坐标原点),则实数r的取值范围是(4,6).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若函数f(x)=x2-2|x|+m有两个相异零点,则实数m的取值范围是m=1或m<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若等比数列{an}的前n项和Sn=3n+1+a,则a=(  )
A.1B.-1C.3D.-3

查看答案和解析>>

同步练习册答案