精英家教网 > 高中数学 > 题目详情
12.已知直线l1:ax-2y=2a-4与l2:2x+a2y=2a2+4.
(1)求证:直线l1与l2都过同一个定点.
(2)当0<a<2时,l1,l2与两坐标轴围成一个四边形,问:a取何值时,这个四边形的面积最小?求出这个最小值.

分析 (1)把所给的两个直线的方程进行整理,把含有字母a的部分都分开,提出a,得到一个直线的方程,把两个方程联立得到结果.
(2)求出直线与坐标轴的交点,把一个四边形转化成两个三角形,根据底边和高得到三角形的面积,表示出面积,根据二次函数的性质得到结果.

解答 证明:(1)由l1:ax-2y-2a+4=0变形得:
a(x-2)-2y+4=0,
所以,当x=2时,y=2,
即直l1过定点(2,2).
由l2:2x+a2y-2a2-4=0变形得a2(y-2)+2x-4=0,
所以当y=2时,x=2,
即直线l2过定点(2,2),
(2)如图示:
直线l1与y轴交点为A(0,2-a),直线l2与x轴交点为B(a2+2,0),如图:
由直线l1:ax-2y-2a+4=0知,直线l1也过定点C(2,2),
过C点作x轴垂线,垂足为D,于是:
S四边形AOBC=S梯形AODC+S△BCD
=$\frac{1}{2}$(2-a+2)•2+$\frac{1}{2}$a2•2
=a2-a+4,
∴当a=$\frac{1}{2}$时,S四边形AOBC最小.
故当a=$\frac{1}{2}$时,所围成的四边形面积最小值为:$\frac{15}{4}$.

点评 本题考查过顶点的直线和四边形的面积的最值,本题解题的关键是表示出面积,在立体几何和解析几何中,不论求什么图形的面积一般都要表示出结果,再用函数的最值来求.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.设f(x)=2+5x+10x2+10x3+5x4+x5,则其反函数的解析式为(  )
A.$y=1+\root{5}{x-1}$B.$y=1-\root{5}{x-1}$C.$y=-1+\root{5}{x-1}$D.$y=-1-\root{5}{x-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=$\left\{\begin{array}{l}{1+lo{g}_{2}x,x>0}\\{{2}^{x},x≤0}\end{array}\right.$,函数g(x)=f[f(x)]-$\frac{1}{2}$的三个零点为x1,x2,x3,且x1<x2<x3,则(  )
A.x2+x3=$\frac{3}{4}$B.x2+x3=1C.x1+x2=$\frac{1}{4}$D.x1+x2=-$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若角α满足sinα-cosα=$\frac{\sqrt{2}}{2}$,则α=$\frac{5π}{12}+2kπ$或$\frac{13π}{12}+2kπ$,k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知在平面直角坐标,$\overrightarrow{a}$=(-1,2),点A(8,0),B(n,t),非零向量$\overrightarrow{c}$,$\overrightarrow{b}$满足|$\overrightarrow{c}$|=2|$\overrightarrow{b}$|=|$\overrightarrow{c}$+3$\overrightarrow{b}$|.
(1)若$\overrightarrow{AB}$⊥$\overrightarrow{a}$,且|$\overrightarrow{AB}$|=$\sqrt{5}$|$\overrightarrow{OA}$|(O为坐标原点),求向量$\overrightarrow{OB}$的坐标;
(2)求$\overrightarrow{c}$,$\overrightarrow{b}$夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)在等差数列{an}中,已知a1=20,前n项和为Sn,且S10=S15,求当n取何值时,Sn取得最大值,并求出它的最大值;
(2)在公差为d的等差数列{an}中,已知a1=10,且a1,2a2+2,5a3成等比数列.
①求d,an
②若d<0,求|a1|+|a2|+|a3|+…+|an|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.等差数列{an}中,若S11=7,S7=11,则S18=-18.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.对任意的x,有f′(x)=4x3,f(1)=-1,则此函数解析式(  )
A.f(x)=x3B.f(x)=x4-2C.f(x)=x3+1D.f(x)=x4-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在三棱锥P-ABC中,PA⊥平面ABC且PA=2,△ABC是边长为$\sqrt{3}$的等边三角形,则三棱锥P-ABC外接球的表面积为8π.

查看答案和解析>>

同步练习册答案