精英家教网 > 高中数学 > 题目详情
11.求直线x-y=0和椭圆$\frac{{x}^{2}}{20}+\frac{{y}^{2}}{5}=1$的两个交点及焦点间距离.

分析 将直线x-y=0代入椭圆方程,求得交点坐标,再由椭圆方程求得焦点坐标,再由两点的距离公式计算即可得到所求.

解答 解:联立直线x-y=0和椭圆$\frac{{x}^{2}}{20}+\frac{{y}^{2}}{5}=1$,
可得5x2=20,解得x=±2,
即有交点为(2,2),(-2,-2),
椭圆$\frac{{x}^{2}}{20}+\frac{{y}^{2}}{5}=1$的焦点为(-$\sqrt{15}$,0),($\sqrt{15}$,0),
即有所求交点的距离为4,焦点的距离为2$\sqrt{15}$.

点评 本题考查椭圆的方程和焦点的坐标的求法,考查直线方程和椭圆方程联立,求交点,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.在△ABC中,内角A,B,C所对的边长分别为a,b,c,且满足asinBcosC+csinBcosA=$\frac{1}{2}$b,则∠B=(  )
A.$\frac{π}{6}$或$\frac{5π}{6}$B.$\frac{π}{3}$C.$\frac{π}{6}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合P={x|x2-2x≥0},Q={x|1<x≤2},则P∩(∁RQ)=(  )
A.(-∞,0]∪[2,+∞)B.(-∞,0]∪(2,+∞)C.(-∞,0)∪[2,+∞)D.(-∞,0)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.“α=$\frac{π}{6}$”是“tan2α=$\sqrt{3}$”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设Sn为等差数列{an}的前n项和,已知a4=9,a3+a7=22.
(I)求数列{an}的通项公式an
(Ⅱ)求证:$\frac{1}{S_1}+\frac{1}{S_2}+\frac{1}{S_3}+…+\frac{1}{S_n}<\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.不等式-x2+3x-2>0的解集为{x|1<x<2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列函数中,既为奇函数又在(0,+∞)内单调递减的是(  )
A.f(x)=x3B.f(x)=${x}^{-\frac{1}{2}}$C.f(x)=-xD.f(x)=x+$\frac{3}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=$\frac{bx}{lnx}$-ax.
(1)若a=0,求f(x)的单调增区间;
(2)当b=1时,若存在x1,x2∈[e,e2],使f(x1)≤f′(x2)+a成立,求实数a的最小值.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若向量$\vec a$,$\vec b$的夹角为$\frac{π}{3}$,且$|{\vec a}|=2$,$|{\vec b}|=1$,则向量$\vec a$与向量$\vec a-2\vec b$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

同步练习册答案