精英家教网 > 高中数学 > 题目详情

【题目】如图,已知平行四边形中,为边的中点,将沿直线翻折成.为线段的中点.

1)证明平面,并求的长;

2)在翻折过程中,当三棱锥的体积取最大时,求平面与平面所成的二面角的余弦值.

【答案】(1)证明见解析;(2)

【解析】

(1)的中点,连接,证明四边形为平行四边形即可.

(2)易得当三棱锥的体积取最大时,面,再以为坐标原点建立空间直角坐标系,再分别求出面与面的法向量,进而求得平面与平面所成的二面角的余弦值即可.

(1) 的中点,连接,因为为线段的中点,故的中位线,.又平行四边形中,为边的中点,故,故.故四边形为平行四边形,.又平面,平面,平面.

(2)因为为线段的中点,故,故当三棱锥的体积取最大时三棱锥的体积取最大.故此时面.

因为,.边长是2的正三角形., ,解得.,.故以为原点建立如图空间直角坐标系.

则平面的一个法向量为.

,,.,.

设平面的一个法向量为,则因为,,

,..
设平面与平面所成的二面角为,则.

故平面与平面所成的二面角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】正四棱锥PABCD的底面边长为2,侧棱长为2,过点A作一个与侧棱PC垂直的平面α,则平面α被此正四棱锥所截的截面面积为_____,平面α将此正四棱锥分成的两部分体积的比值为_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)试讨论函数的单调性;

2)设,记,当时,若函数与函数有两个不同交点,设线段的中点为,试问s是否为的根?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】今年,新型冠状病毒来势凶猛,老百姓一时间谈毒色变,近来,有关喝白酒可以预防病毒的说法一直在民间流传,更有人拿出字的繁体字进行解读为:医治瘟疫要喝酒,为了调查喝白酒是否有助于预防病毒,我们调查了1000人的喝酒生活习惯与最终是否得病进行了统计,表格如下:

每周喝酒量(两)

人数

100

300

450

100

规定:①每周喝酒量达到4两的叫常喝酒人,反之叫不常喝酒人;

②每周喝酒量达到8两的叫有酒瘾的人.

1)求值,从每周喝酒量达到6两的人中按照分层抽样选出6人,再从这6人中选出2人,求这2人中无有酒瘾的人的概率;

2)请通过上述表格中的统计数据,填写完下面的列联表,并通过计算判断是否能在犯错误的概率不超过0.1的前提下认为是否得病与是否常喝酒有关?并对民间流传的说法做出你的判断.

常喝酒

不常喝酒

合计

得病

不得病

250

650

合计

参考公式:,其中

0.100

0.050

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足奇数项成等差,公差为,偶数项成等比,公比为,且数列的前项和为.

.

①求数列的通项公式;

②若,求正整数的值;

,对任意给定的,是否存在实数,使得对任意恒成立?若存在,求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱柱ABCA1B1C1中,E是棱AB的中点,动点F是侧面ACC1A1(包括边界)上一点,若EF//平面BCC1B1,则动点F的轨迹是(

A.线段B.圆弧

C.椭圆的一部分D.抛物线的一部分

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知极点为直角坐标系的原点,极轴为x轴正半轴且单位长度相同的极坐标系中曲线t为参数).

1)求曲线上的点到曲线距离的最小值;

2)若把上各点的横坐标都扩大到原来的2倍,纵坐标都扩大到原来的倍,得到曲线,设,曲线交于AB两点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解运动健身减肥的效果,某健身房调查了20名肥胖者,健身之前他们的体重(单位:)情况如柱形图1所示,经过四个月的健身后,他们的体重情况如柱形图2所示.对比健身前后,关于这20名肥胖者,下面结论正确的是( )

A.他们健身后,体重在区间内的人数增加了2

B.他们健身后,体重在区间内的人数没有改变

C.因为体重在内所占比例没有发生变化,所以说明健身对体重没有任何影响

D.他们健身后,原来体重在区间内的肥胖者体重都有减少

查看答案和解析>>

同步练习册答案