精英家教网 > 高中数学 > 题目详情

【题目】如图(1),等腰梯形分别是的两个三等分点,若把等腰梯形沿虚线折起,使得点和点重合,记为点 如图(2).

1)求证:平面平面

2)求平面与平面所成锐二面角的余弦值.

【答案】(1)详见解析;(2).

【解析】

1)推导出,从而,由此能证明平面平面

2)过点,过点的平行线交于点,则,以为原点,以所在直线分别为轴、轴、轴建立空间直角坐标系,利用向量法能求出平面与平面所成锐二面角的余弦值.

1)证明:四边形为等腰梯形, 的两个三等分点,

四边形是正方形,

,且

平面平面平面

2)过点于点,过点的平行线交于点,则

为坐标原点,以所在直线分别为轴、轴、轴建立空间直角坐标系,如图所示:

,,,

设平面的法向量

,取,得

设平面的法向量

,∴,取,得:

设平面与平面所成锐二面角为

平面与平面所成锐二面角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列说法错误的是( )

A. 在回归模型中,预报变量的值不能由解释变量唯一确定

B. 若变量满足关系,且变量正相关,则也正相关

C. 在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高

D. 以模型去拟合一组数据时,为了求出回归方程,设,将其变换后得到线性方程,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆经过点,且离心率为.

(Ⅰ)求椭圆的方程;

(Ⅱ)过点任作一条直线与椭圆交于不同的两点.在轴上是否存在点,使得?若存在,求出点的坐标;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底而为正方形,底面,点为棱的中点,点分别为棱上的动点(与所在棱的端点不重合),且满足.

(1)证明:平面平面

(2)当三棱锥的体积最大时,求二面角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形为正方形,分别为的中点,以为折痕把折起,使点到达点的位置,且.

(1)证明:平面平面

(2)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的图像关于直线对称.

1)求的值;

2)判断并证明函数在区间上的单调性;

3)若直线的图像无公共点,且,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设某校新、老校区之间开车单程所需时间为只与道路畅通状况有关,对其容量为的样本进行统计,结果如图:

(分钟)

25

30

35

40

频数(次)

20

30

40

10

1)求的分布列与数学期望

2)刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的普通方程为,曲线参数方程为为参数);以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,直线的极坐标方程为.

(1)求的参数方程和的直角坐标方程;

(2)已知上参数对应的点,上的点,求中点到直线的距离取得最小值时,点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个棱长为的正方体形状的铁盒内放置一个正四面体,且能使该正四面体在铁盒内任意转动,则该正四面体的体积的最大值是_____.

查看答案和解析>>

同步练习册答案