精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=alnx+x2(a为实常数).
(Ⅰ)若a=﹣2,求证:函数f(x)在(1,+∞)上是增函数;
(Ⅱ)求函数f(x)在[1,e]上的最小值及相应的x值.

【答案】解:(Ⅰ)当a=﹣2时,f(x)=x2﹣2lnx,当x∈(1,+∞),

故函数f(x)在(1,+∞)上是增函数.

(Ⅱ) ,当x∈[1,e],2x2+a∈[a+2,a+2e2].

若a≥﹣2,f'(x)在[1,e]上非负(仅当a=﹣2,x=1时,f'(x)=0),

故函数f(x)在[1,e]上是增函数,此时[f(x)]min=f(1)=1.

若﹣2e2<a<﹣2,当 时,f'(x)=0;当 时,f'(x)<0,

此时f(x)是减函数;当 时,f'(x)>0,此时f(x)是增函数.

故[f(x)]min= =

若a≤﹣2e2,f'(x)在[1,e]上非正(仅当a=﹣2e2,x=e时,f'(x)=0),

故函数f(x)在[1,e]上是减函数,此时[f(x)]min=f(e)=a+e2

综上可知,当a≥﹣2时,f(x)的最小值为1,相应的x值为1;

当﹣2e2<a<﹣2时,f(x)的最小值为 ,相应的x值为

当a≤﹣2e2时,f(x)的最小值为a+e2,相应的x值为e


【解析】(Ⅰ)将a=﹣2代入,然后求出导函数f'(x),欲证函数f(x)在(1,+∞)上是增函数只需证导函数在(1,+∞)上恒大于零即可;(Ⅱ)先求出导函数f'(x),然后讨论a研究函数在[1,e]上的单调性,将f(x)的各极值与其端点的函数值比较,其中最小的一个就是最小值.
【考点精析】掌握利用导数研究函数的单调性和函数的最大(小)值与导数是解答本题的根本,需要知道一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某工程设备租赁公司为了调查A,B两种挖掘机的出租情况,现随机抽取了这两种挖掘机各100台,分别统计了每台挖掘机在一个星期内的出租天数,统计数据如下表: A型车挖掘机

出租天数

1

2

3

4

5

6

7

车辆数

5

10

30

35

15

3

2

B型车挖掘机

出租天数

1

2

3

4

5

6

7

车辆数

14

20

20

16

15

10

5

(Ⅰ)根据这个星期的统计数据,将频率视为概率,求该公司一台A型挖掘机,一台B型挖掘机一周内合计出租天数恰好为4天的概率;
(Ⅱ)如果A,B两种挖掘机每台每天出租获得的利润相同,该公司需要从A,B两种挖掘机中购买一台,请你根据所学的统计知识,给出建议应该购买哪一种类型,并说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方形ABCD中,E,G分别在边DA,DC上(不与端点重合),且DE=DG,过D点作DF⊥CE,垂足为F.
(Ⅰ)证明:B,C,G,F四点共圆;
(Ⅱ)若AB=1,E为DA的中点,求四边形BCGF的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的直三棱柱ABC﹣A1B1C1中,面AA1B1B和面AA1C1C都是边长为1的正方形且互相垂直,D为AA1的中点,E为BC1的中点.
(Ⅰ)证明:DE∥平面A1B1C1
(Ⅱ)求平面C1BD和平面CBD所成的角(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)= ,且g(x)=f(x)+ 有三个零点,则实数a的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.
(Ⅰ)证明:PA⊥BD;
(Ⅱ)若PD=AD,求二面角A﹣PB﹣C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“欧几里得算法”是有记载的最古老的算法,可追溯至公元前300年前,如图的程序框图的算法思路就是来源于“欧几里得算法”.执行改程序框图(图中“aMODb”表示a除以b的余数),若输入的a,b分别为675,125,则输出的a=(
A.0
B.25
C.50
D.75

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}满足:a1=1,an+1=3an , n∈N* . 设Sn为数列{bn}的前n项和,已知b1≠0,2bn﹣b1=S1Sn , n∈N*
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设cn=bnlog3an , 求数列{cn}的前n项和Tn
(Ⅲ)证明:对任意n∈N*且n≥2,有 + +…+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若执行右侧的程序框图,当输入的x的值为4时,输出的y的值为2,则空白判断框中的条件可能为(
A.x>3
B.x>4
C.x≤4
D.x≤5

查看答案和解析>>

同步练习册答案