精英家教网 > 高中数学 > 题目详情
甲、乙两人进行摸球游戏,每次摸取一个球,一袋中装有形状、大小相同的1个红球和2个黑球,规则如下:若摸到红球,将此球放入袋中可继续再摸;若摸到黑球,将此球放入袋中则由对方摸球.
(1)求在前四次摸球中,甲恰好摸到两次红球的概率;
(2)设随机变量ξ表示前三次摸球中甲摸到红球的次数,求随机变量ξ的分布列及数学期望Eξ.
(1)设甲、乙两人摸到的球为红球分别为事件A,事件B,
前四次摸球中甲恰好摸到两次红球为事件C,
P(A)=P(B)=
1
3

P(C)=P(AA
.
A
+A
.
A
.
B
A+
.
A
.
B
AA)

=
1
3
×
1
3
×
2
3
+
1
3
×
2
3
×
2
3
×
1
3
+
2
3
×
2
3
×
1
3
×
1
3
=
14
81

(2)ξ的所有取值分虽为0,1,2
P(ξ=0)=
2
3
×
1
3
+
2
3
×
2
3
×
2
3
=
14
27

P(ξ=1)=
1
3
×
2
3
+
2
3
×
2
3
×
1
3
=
10
27

P(ξ=2)=
1
3
×
1
3
×
2
3
=
2
27

P(ξ=3)=
1
3
×
1
3
×
1
3
=
1
27

∴ξ的分布列为
ξ 0 1 2 3
P
14
27
10
27
2
27
1
27
Eξ=0×
14
27
+1×
10
27
+2×
2
27
+3×
1
27
=
17
27
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•乐山二模)甲、乙两人进行两种游戏,两种游戏的规则由下表给出:(球的大小都相同)
游戏1 游戏2
裁判的口袋中有4个白球和5个红球 甲的口袋中有6个白球和2个红球
乙的口袋中有3个白球和5个红球
由裁判摸两次,每次摸一个,记下颜色后放回 每人都从自己的口袋中摸一个球
摸出的两球同色→甲胜
摸出的两球不同色→乙胜
摸出的两球同色→甲胜
摸出的两球不同色→乙胜
(1)分别求出在游1中甲、乙获胜的概率;
(2)求出在游戏2中甲获胜的概率,并说明这两个游戏哪个游戏更公平.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

甲、乙两人进行两种游戏,两种游戏的规则由下表给出:(球的大小都相同)
游戏1 游戏2
裁判的口袋中有4个白球和5个红球 甲的口袋中有6个白球和2个红球
乙的口袋中有3个白球和5个红球
由裁判摸两次,每次摸一个,记下颜色后放回 每人都从自己的口袋中摸一个球
摸出的两球同色→甲胜
摸出的两球不同色→乙胜
摸出的两球同色→甲胜
摸出的两球不同色→乙胜
(1)分别求出在游1中甲、乙获胜的概率;
(2)求出在游戏2中甲获胜的概率,并说明这两个游戏哪个游戏更公平.

查看答案和解析>>

科目:高中数学 来源:2012年四川省乐山市高考数学二模试卷(文科)(解析版) 题型:解答题

甲、乙两人进行两种游戏,两种游戏的规则由下表给出:(球的大小都相同)
游戏1游戏2
裁判的口袋中有4个白球和5个红球甲的口袋中有6个白球和2个红球
乙的口袋中有3个白球和5个红球
由裁判摸两次,每次摸一个,记下颜色后放回每人都从自己的口袋中摸一个球
摸出的两球同色→甲胜
摸出的两球不同色→乙胜
摸出的两球同色→甲胜
摸出的两球不同色→乙胜
(1)分别求出在游1中甲、乙获胜的概率;
(2)求出在游戏2中甲获胜的概率,并说明这两个游戏哪个游戏更公平.

查看答案和解析>>

同步练习册答案