已知函数.
(1)当时,讨论函数的单调性;
(2)当时,在函数图象上取不同两点A、B,设线段AB的中点为,试探究函数在Q点处的切线与直线AB的位置关系?
(3)试判断当时图象是否存在不同的两点A、B具有(2)问中所得出的结论.
(1)时,函数在上单调递增;当,函数在和上单调递增;在上单调递减;(2)所以函数Q点处的切线与直线AB平行;
(3)图象不存在不同的两点A、B具有(2)问中所得出的结论.
【解析】
试题分析:(1)求导即可知其单调性;(2)利用导数求出函数在点Q处的切线的斜率,再求出直线AB的斜率,可看出它们是相等的,所以函数在Q点处的切线与直线AB平行;
(3)设,若满足(2)中结论,则有
,化简得(*).如果这个等式能够成立,则存在,如果这个等式不能成立,则不存在.设,则*式整理得,问题转化成该方程在上是否有解.再设函数,下面通过导数即可知方程在上是否有解,从而可确定函数是否满足(2)中结论.
(1)由题知,
当即时,,函数在定义域上单调递增;
当,由解得,函数在和上单调递增;在上单调递减; 4分
(2),,
所以函数Q点处的切线与直线AB平行; .7分
(3)设,若满足(2)中结论,有
,即
即 (*) .9分
设,则*式整理得,问题转化成该方程在上是否有解; 11分
设函数,则,所以函数在单调递增,即,即方程在上无解,即函数不满足(2)中结论 14分
考点:导数的应用.
科目:高中数学 来源: 题型:
a |
b |
a |
b |
m |
1 |
2 |
n |
π |
6 |
OQ |
m |
OP |
n |
π |
6 |
π |
3 |
A、4 | ||
B、2 | ||
C、2
| ||
D、2
|
查看答案和解析>>
科目:高中数学 来源:2013-2014学年四川省资阳市高三下学期4月高考模拟考试文科数学试卷(解析版) 题型:选择题
设P是双曲线上除顶点外的任意一点,、分别是双曲线的左、右焦点,△的内切圆与边相切于点M,则( )
(A)5 (B)4 (C)2 (D)1
查看答案和解析>>
科目:高中数学 来源:2013-2014学年四川省高三二诊模拟理科数学试卷(解析版) 题型:选择题
在平面直角坐标系中,已知三点,直线AC的斜率与倾斜角为钝角的直线AB的斜率之和为,而直线AB恰好经过抛物线)的焦点F并且与抛物线交于P、Q两点(P在Y轴左侧).则( )
A.9 B. C. D.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年四川省高三二诊模拟文科数学试卷(解析版) 题型:填空题
过抛物线的焦点作直线交抛物线于A、B两点,若线段AB中点的横坐标为3,则等于 .
查看答案和解析>>
科目:高中数学 来源:2013-2014学年四川省高三二诊模拟文科数学试卷(解析版) 题型:选择题
已知是椭圆的两个焦点,过且与椭圆长轴垂直的直线交椭圆于A、B两点,若是正三角形,则这个椭圆的离心率是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年四川省高三三诊模拟理科数学试卷(解析版) 题型:解答题
已知函数
(1)当时,求函数取得最大值和最小值时的值;
(2)设锐角的内角A、B、C的对应边分别是,且,若向量与向量平行,求的值.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年四川省高三三诊模拟理科数学试卷(解析版) 题型:选择题
已知椭圆的左右焦点为,直线过点且垂直于椭圆的长轴,动直线垂直于直线于点P,线段的垂直平分线与的交点的轨迹为曲线,若是上不同的点,且,则的取值范围是( )
A. B.
C. D.以上都不正确
查看答案和解析>>
科目:高中数学 来源:2013-2014学年四川省高三三诊模拟文科数学试卷(解析版) 题型:填空题
一个几何体的主视图和俯视图如图所示,主视图是边长为的正三角形,俯视图是边长为的正六边形,则该几何体左视图的面积是
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com