精英家教网 > 高中数学 > 题目详情
(2012•丰台区一模)已知a<b,函数f(x)=sinx,g(x)=cosx.命题p:f(a)•f(b)<0,命题q:函数g(x)在区间(a,b)内有最值.则命题p是命题q成立的(  )
分析:由f(a)•f(b)<0,及f(x)在R上连续可知函数f(x)在(a,b)上存在零点,然后结合正弦函数的零点是余弦函数的最值点可判断,若g(x)=cosx在(a,b)上有最值,f(x)=sinx在(a,b)上有零点,但由于函数f(x)=sinx在(a,b)不一定单调,f(a)f(b)<0不一定成立
解答:解:∵f(a)•f(b)<0,
又∵f(x)在R上连续
根据函数的零点判定定理可知,函数f(x)在(a,b)上存在零点
根据正弦函数、余弦函数的性质可知,正弦函数的零点是余弦函数的最值点
∴g(x)=cosx在(a,b)上有最值
∴p⇒q
若g(x)=cosx在(a,b)上有最值则根据余弦函数的零点是正弦函数的零点
则f(x)=sinx在(a,b)上有零点,但是由于函数f(x)=sinx在(a,b)不一定单调,f(a)f(b)<0不一定成立
故命题p:f(a)•f(b)<0,命题q:函数g(x)在区间(a,b)内有最值的充分不必要条件
故选A
点评:本题主要考查 了充分条件与必要条件的判断,解题的关键是准确、熟练的应用函数的零点定理及正弦函数与余弦函数的性质
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•丰台区一模)已知函数f(x)=ax2-(a+2)x+lnx.
(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)当a>0时,函数f(x)在区间[1,e]上的最小值为-2,求a的取值范围;
(Ⅲ)若对任意x1,x2∈(0,+∞),x1<x2,且f(x1)+2x1<f(x2)+2x2恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•丰台区一模)某班共有学生40人,将一次数学考试成绩(单位:分)绘制成频率分布直方图,如图所示.
(Ⅰ)请根据图中所给数据,求出a的值;
(Ⅱ)从成绩在[50,70)内的学生中随机选3名学生,求这3名学生的成绩都在[60,70)内的概率;
(Ⅲ)为了了解学生本次考试的失分情况,从成绩在[50,70)内的学生中随机选取3人的成绩进行分析,用X表示所选学生成绩在[60,70)内的人数,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•丰台区一模)已知向量
a
=(sinθ,cosθ)
b
=(3,4)
,若
a
b
,则tan2θ等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•丰台区一模)设a=0.64.2,b=70.6,c=log0.67,则a,b,c的大小关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•丰台区一模)已知定义在R上的函数y=f(x)满足f(x+2)=f(x),当-1<x≤1时,f(x)=x3.若函数g(x)=f(x)-loga|x|至少有6个零点,则a的取值范围是(  )

查看答案和解析>>

同步练习册答案