精英家教网 > 高中数学 > 题目详情
20、如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E、F分别是AB、PB的中点.
(1)求证:CD∥面PAB;
(2)求异面直线EF与CD所成角;
(3)在AD上是否存在点Q,使QF⊥面PBC,给出理由或证明.
分析:(1)由正方形的性质,我们可得CD∥AB,结合线面平行的判定定理可得CD∥面PAB;
(2)由(1)中CD∥AB,结合PD⊥底面ABCD,我们易证明CD⊥面PAD,即CD⊥PA,由E、F分别是AB、PB的中点,结合三角形中位线定理,得EF∥PA,进而得到异面直线EF与CD所成角;
(3)取PC中点K,AD的中点Q,连DK,FK,易证DK⊥面PBC,结合QF∥DK,即可得到QF⊥面PBC.
解答:解:(1)∵CD∥AB,AB?面PAB,CD?面PAB,
∴CD∥面PAB    (4分)
(2)∵CD∥AB,CD⊥PD
∴CD⊥面PAD,
∴CD⊥PA,又EF∥PA
∴EF与CD所成角为90°(8分)
(3)当Q是AD中点时,有QF⊥面PBC.
取PC中点K,连DK,FK,则DK⊥面PBC.
又FK∥AD,FK=AD,
∴QF∥DK
∴QF⊥面PBC(12分)
点评:本题考查的知识眯是异面直线及其所成的角,直线与平面平行的判定,直线与平面垂直的判定,(3)中是探索使结论成立的充分条件,只要证明当Q为AD中点时,满足题意即可.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)证明AD⊥PB;
(2)求二面角P-BD-A的正切值大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,AB=4,PA=3,点A在PD上的射影为点G,点E在AB上,平面PEC⊥平面PDC.
(1)求证:AG∥平面PEC;
(2)求AE的长;
(3)求二面角E-PC-A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求证:平面PBD⊥平面PAC.
(Ⅱ)求四棱锥P-ABCD的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面是边长为a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E为PB中点
(1)求证;平面ACE⊥面ABCD;
(2)求三棱锥P-EDC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•武汉模拟)如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
(1)求二面角P-CD-A的平面角正切值,
(2)求A到面PCD的距离.

查看答案和解析>>

同步练习册答案