【题目】某市地铁全线共有四个车站,甲、乙两人同时在地铁第1号车站(首发站)乘车,假设每人自第2号站开始,在每个车站下车是等可能的,约定用有序实数对表示“甲在号车站下车,乙在号车站下车”
(Ⅰ)用有序实数对把甲、乙两人下车的所有可能的结果列举出来;
(Ⅱ)求甲、乙两人同在第3号车站下车的概率;
(Ⅲ)求甲、乙两人在不同的车站下车的概率.
科目:高中数学 来源: 题型:
【题目】随着经济的发展,某地最近几年某商品的需求量逐年上升.下表为部分统计数据:
年份 | |||||
需求量(万件) |
为了研究计算的方便,工作人员将上表的数据进行了处理,令,.
(1)填写下列表格并求出关于的线性回归方程:
时间代号 | |||||
(万件) |
(2)根据所求的线性回归方程,预测到年年底,某地对该商品的需求量是多少?
(附:线性回归方程,其中,)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校为创建“绿色校园”,在校园内种植树木,有A、B、C三种树木可供选择,已知这三种树木6年内的生长规律如下:
A树木:种植前树木高0.84米,第一年能长高0.1米,以后每年比上一年多长高0.2米;
B树木:种植前树木高0.84米,第一年能长高0.04米,以后每年生长的高度是上一年生长高度的2倍;
C树木:树木的高度(单位:米)与生长年限(单位:年,)满足如下函数:(表示种植前树木的高度,取).
(1)若要求6年内树木的高度超过5米,你会选择哪种树木?为什么?
(2)若选C树木,从种植起的6年内,第几年内生长最快?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
(1)求回归直线方程,其中,.
(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为(为参数),在以原点为极点, 轴正半轴为极轴的极坐标系中,直线的极坐标方程为.
(1)求曲线的普通方程和直线的倾斜角;
(2)设点,直线和曲线交于两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数学40名数学教师,按年龄从小到大编号为1,2,…40。现从中任意选取6人分成两组分配到A,B两所学校从事支教工作,其中三名编号较小的教师在一组,三名编号较大的教师在另一组,那么编号为8,12,28的数学教师同时入选并被分配到同一所学校的方法种数是
A. 220 B. 440 C. 255 D. 510
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】微信红包是一款年轻人非常喜欢的手机应用.某网络运营商对甲、乙两个品牌各种型号的手机在相同环境下抢到红包的个数进行统计,得到如下数据:
品牌 型号 | Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ |
甲品牌(个) | 4 | 3 | 8 | 6 | 12 |
乙品牌(个) | 5 | 7 | 9 | 4 | 3 |
红包个数 手机品牌 | 优良 | 一般 | 合计 |
甲品牌(个) | |||
乙品牌(个) | |||
合计 |
(Ⅰ)如果抢到红包个数超过个的手机型号为“优良”,否则为“一般”,请完成上述表格,并据此判断是否有的把握认为抢到红包的个数与手机品牌有关?
(Ⅱ)不考虑其它因素,现要从甲、乙两品牌的种型号中各选出种型号的手机进行促销活动,求恰有一种型号是“优良”,另一种型号是“一般”的概率;
参考公式:随机变量的观察值计算公式:,
其中.临界值表:
0.10 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,以原点为极点,轴的非负半轴为极轴建立极坐标系,已知曲线的极坐标方程为,过点的直线(为参数)与曲线相交于两点.
(I)试写出曲线的直角坐标方程和直线的普通方程;
(Ⅱ)求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com