(本题满分14分)
有甲乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表.
| 优秀 | 非优秀 | 总计 |
甲班 | 10 | | |
乙班 | | 30 | |
合计 | | | 105 |
解:根据列联表中的数据,得到
…………………5分
因此有95%的把握认为“成绩与班级有关系”。………………7分
(Ⅲ)若按下面的方法从甲班优秀的学生抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到6或10号的概率.
解:设“抽到6或10号”为事件A,先后两次抛掷一枚均匀的骰子,出现的点数为(x,y)…………………8分
所有的基本事件有(1,1)、(1,2)、(1,3)、…、(6,6),
共36个。…………………10分
事件A包含的基本事件有:
(1,5)、(2,4)、(3,3)、(4,2)、(5,1)(4,6)、(5,5)、(6、4),共8个…………12分
…………………14分
解析
科目:高中数学 来源: 题型:
(本题满分14分)
有三个生活小区,分别位于三点处,且,. 今计划合建一个变电站,为同时方便三个小区,准备建在的垂直平分线
上的点处,建立坐标系如图,且.
(Ⅰ) 若希望变电站到三个小区的距离和最小,
点应位于何处?
(Ⅱ) 若希望点到三个小区的最远距离为最小,
点应位于何处?
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分14分)
某地有三家工厂,分别位于矩形ABCD的顶点A、B及CD的中点P处,已知AB=20km,BC=10km,为了处理三家工厂的污水,现要在矩形ABCD的区域上(含边界),且A、B与等距离的一点O处建造一个污水处理厂,并铺设排污管道AO、BO、OP,设排污管道的总长为ykm。
(1)按下列要求写出函数关系式:
①设∠BAO=θ(rad),将y表示成θ的函数关系式;
②设OP=x(km),将y表示成x的函数关系式;
(2)请你选用(1)中的一个函数关系式,确定污水处理厂的位置,使三条排污管道总长度最短
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分14分)
某地有三家工厂,分别位于矩形ABCD的顶点A、B及CD的中点P处,已知AB=20km,BC=10km,为了处理三家工厂的污水,现要在矩形ABCD的区域上(含边界),且A、B与等距离的一点O处建造一个污水处理厂,并铺设排污管道AO、BO、OP,设排污管道的总长为ykm。
(1)按下列要求写出函数关系式:
①设∠BAO=θ(rad),将y表示成θ的函数关系式;
②设OP=x(km),将y表示成x的函数关系式;
(2)请你选用(1)中的一个函数关系式,确定污水处理厂的位置,使三条排污管道总长度最短
查看答案和解析>>
科目:高中数学 来源:2010-2011学年广东省高三全真模拟考试数学文卷 题型:解答题
(本题满分14分)
有甲乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表.
|
优秀 |
非优秀 |
总计 |
甲班 |
10 |
|
|
乙班 |
|
30 |
|
合计 |
|
|
105 |
已知在全部105人中抽到随机抽取1人为优秀的概率为
(Ⅰ)请完成上面的列联表;
(Ⅱ)根据列联表的数据,若按的可靠性要求,能否认为“成绩与班级有关系” .
(Ⅲ)若按下面的方法从甲班优秀的学生抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到6或10号的概率.
查看答案和解析>>
科目:高中数学 来源:2010年广东省高二上学期第一次段考理科数学卷 题型:解答题
(本题满分14分).有一块边长为4的正方形钢板,现对其切割、焊接成一个长方体形无盖容器(切、焊损耗忽略不计).有人应用数学知识作如下设计:在钢板的四个角处各切去一个边长为的小正方形,剰余部分围成一个长方体,该长方体的高是小正方形的边长.
(1)请你求出这种切割、焊接而成的长方体容器的的容积V1(用表示);
(2)经过设计(1)的方法,计算得到当时,Vl取最大值,为了材料浪费最少,工人师傅还实践出了其它焊接方法,请写出与(1)的焊接方法更佳(使材料浪费最少,容积比Vl大)的设计方案,并计算利用你的设计方案所得到的容器的容积。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com