精英家教网 > 高中数学 > 题目详情
若存在实数x∈[2,4],使x2-2x+5-m<0成立,则m的取值范围为
A.(13,+∞)B.(5,+∞)C.(4,+∞)D.(-∞,13)
B  

试题分析:因为,存在实数x∈[2,4],使x2-2x+5-m<0成立,所以存在实数x∈[2,4]使x2-2x+5< m,而x∈[2,4]时,x2-2x+5=(x-1)2+4最大值为13,最小值为5,故选B。
点评:典型题,恒成立或存在性问题,一般的通过分离参数,转化成求函数最值。本题主要考查二次函数在闭区间的最值求法。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

,则=_______________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下面有四个结论:①偶函数的图像一定与轴相交。②奇函数的图像不一定过原点。③偶函数若在上是减函数,则在上一定是增函数。④有且只有一个函数既是奇函数又是偶函数。其中正确结论的个数是(   )
A.1B.2C.3 D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的定义域为R,且定义如下:(其中M是实数集R的非空真子集),在实数集R上有两个非空真子集AB满足,则函数的值域为                           (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知函数
(I)求函数的单调区间;
(Ⅱ)若恒成立,试确定实数k的取值范围;
(Ⅲ)证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数由下表定义:

1
2
3
4
5

4
1
3
5
2
,则             

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)已知函数是定义在R上的奇函数,当时,
(1)求的解析式
(2)解关于的不等式

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知定义在上的函数为常数,若为偶函数,
(1)求的值;
(2)判断函数内的单调性,并用单调性定义给予证明;
(3)求函数的值域.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)已知函数 (R).
(1)若,求函数的极值;
(2)是否存在实数使得函数在区间上有两个零点,若存在,求出的取值范围;若不存在,说明理由。

查看答案和解析>>

同步练习册答案