精英家教网 > 高中数学 > 题目详情
11.已知指数函数y=g(x)的图象经过点(2,4),且定义域为R的函数f(x)=$\frac{b-g(x)}{a+g(x)}$是奇函数.
(1)求f(x)的解析式,判断f(x)在定义域R上的单调性,并给予证明;
(2)若关于x的方程f(x)=m在[-1,0)上有解,求f($\frac{1}{m}$)的取值范围.

分析 (1)求出指数函数的解析式,利用定义域为R的函数f(x)=$\frac{b-g(x)}{a+g(x)}$是奇函数,求f(x)的解析式,利用导数的方法判断并证明f(x)在定义域R上的单调性;
(2)若关于x的方程f(x)=m在[-1,0)上有解,求出m的范围,即可求f($\frac{1}{m}$)的取值范围.

解答 解:(1)指数函数y=g(x)的图象经过点(2,4),则g(x)=2x
f(x)=$\frac{b-g(x)}{a+g(x)}$是奇函数,f(0)=0,可得b=1,
由f(-1)=-f(1),可得a=1,∴f(x)=$\frac{1-{2}^{x}}{1+{2}^{x}}$,
∵f(x)=$\frac{1-{2}^{x}}{1+{2}^{x}}$=-1+$\frac{2}{1+{2}^{x}}$,∴f′(x)=$\frac{-2•{2}^{x}ln2}{(1+{2}^{x})^{2}}$<0,
∴f(x)在定义域R上单调递减;
(2)方程f(x)=m在[-1,0)上有解,即$\frac{2}{1+{2}^{x}}$-1=0在[-1,0)上有解
因为f(x)在R上的减函数,所以当x∈[-1,0),0=f(0)<m≤f(-1)=$\frac{1}{3}$,得$\frac{1}{m}$≥3,
所以f($\frac{1}{m}$)≤f(3)=-$\frac{7}{9}$
又由$\frac{2}{1+{2}^{x}}$>0,得$\frac{2}{1+{2}^{x}}$-1>-1,得-1<f($\frac{1}{m}$)≤-$\frac{7}{9}$,
所以f($\frac{1}{m}$)的取值范围是(-1,-$\frac{7}{9}$].

点评 本题考查计算解析式的确定,考查函数奇偶性的运用,考查函数的单调性,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知集合A={x|x2-9=0},则下列式子表示正确的有(  )
①3∈A;②{-3}∈A;③∅⊆A;④{3,-3}⊆A.
A.4个B.3个C.2个D.1个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设等差数列{an}的前n项和为Sn,若Sm-2=-4,Sm=0,Sm+2=12,则第m项am=(  )
A.0B.1C.3D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若幂函数f(x)=(m2-m-1)x1-m是偶函数,则实数m=(  )
A.-1B.2C.3D.-1或2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知P1,P2分别为直线l1:x+3y-9=0和l2:x+3y+1=0上的动点,则|P1P2|的最小值是$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆Γ:$\frac{{x}^{2}}{4}$+y2=1的左顶点为R,点A(2,1),B(-2,1),O为坐标原点.
(I)若P是椭圆Γ上任意一点,$\overrightarrow{OP}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$,求m2+n2的值;
(II)设Q是椭圆Γ上任意一点,S(6,0),求$\overrightarrow{QS}$•$\overrightarrow{QR}$的取值范围;
(Ⅲ)设M(x1,y1),N(x2,y2)是椭圆Γ上的两个动点,满足kOM•kON=kOA•kOB,试探究△OMN的面积是否为定值,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的长轴长为4,离心率为$\frac{1}{2}$,F1,F2分别为其左右焦点.
(Ⅰ)求椭圆C1的方程;
(Ⅱ)在抛物线C:y2=4x上有两点M,N,椭圆C1上有两点P,Q,满足$\overrightarrow{M{F}_{2}}$与$\overrightarrow{N{F}_{2}}$共线,$\overrightarrow{P{F}_{2}}$与$\overrightarrow{Q{F}_{2}}$共线,且$\overrightarrow{P{F}_{2}}$•$\overrightarrow{M{F}_{2}}$=0,直线MN的斜率为k(k≠0),求四边形PMQN面积(用k表示).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(理)宜黄高速公路连接宜昌、武汉、黄石三市,全长约350公里,是湖北省大三角经济主骨架的干线公路之一.若某汽车从进入该高速公路后以不低于60千米/时且不高于120千米/时的速度匀速行驶,已知该汽车每小时的运输成本由固定部分和可变部分组成,固定部分为200元,可变部分与速度v(千米/时)的平方成正比(比例系数记为k).当汽车以最快速度行驶时,每小时的运输成本为488元.若使汽车的全程运输成本最低,其速度为100千米/小时.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列各式正确的是(  )
(1)($\frac{cosx}{x}$)′=$\frac{-sinx}{{x}^{2}}$ 
(2)[(x2+x+1)ex]′=(2x+1)ex
(3)($\frac{2x}{{x}^{2}+1}$)′=$\frac{2-2{x}^{2}}{({x}^{2}+1)^{2}}$
(4)(e3x+1)′=3e3x+1
A.(1)(2)B.(3)(4)C.(2)(3)D.(1)(4)

查看答案和解析>>

同步练习册答案