精英家教网 > 高中数学 > 题目详情
设f(x)=g(x)是二次函数,若f(g(x))的值域是[0,+∞],则g(x)x,|x|<1的值域是( )
A.[-∞,-1]∪[1,+∞]
B.[-∞,-1]∪[0,+∞]
C.[0,+∞]
D.[1,+∞]
【答案】分析:根据二次函数值域[0,+∞),求出a、b、c满足的条件,然后根据二次函数的性质求出g(x)的值域从而求出g(x)x,|x|<1的值域.
解答:解:∵f(x)=g(x)是二次函数,若f(g(x))的值域是[0,+∞),
∴设f(x)=ax2+bx+c,a>0,b2-4ac≥0
∵f(g(x))的值域是[0,+∞),g(x)是二次函数
∴g(x)≥0,而|x|<1
g(x)x,|x|<1的值域是[0,+∞)
故选C.
点评:本题主要考查了复合函数的值域问题,同时考查了函数g(x)x在[-1,1]上的值域等有关基础知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=
a
b
a
=(2cosx,1),
b
=(cosx,
3
sin2x),x∈R.
(I)若f(x)=0且x∈[-
π
3
π
3
],求x的值
(II)g(x)=cos(ωx-
π
3
)+k与f(x)的最小正周期相同,g(x)经过(
π
6
,2
),求g(x)的值域以及单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x2-(k2+k+1)x+15,g(x)=k2x-k,其中k∈R.
(1)设p(x)=f(x)+g(x),若p(x)在(1,4)上有零点,求实数k的取值范围;
(2)设函数q(x)=
g(x)x≥0
f(x)x<0
是否存在实数k,对任意给定的非零实数x1,存在唯一的非零实数x2(x2≠x1),使得q(x2)=q(x1)?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年北京市房山区周口店中学高三(下)3月月考数学试卷(理科)(解析版) 题型:解答题

设f(x)是定义在R上的奇函数,g(x)与f(x)的图象关于直线x=1对称,若g(x)=a(x-2)-(x-2)3
(1)求f(x)的解析式;
(2)当x=1时,f(x)取得极值,证明:对任意x1,x2∈(-1,1),不等式|f(x1)-f(x2)|<4恒成立;
(3)若f(x)是[1,+∞)上的单调函数,且当x≥1,f(x)≥1时,有f[f(x)]=x,求证:f(x)=x

查看答案和解析>>

科目:高中数学 来源:2012年浙江省高考数学冲刺试卷3(理科)(解析版) 题型:解答题

设f(x)是定义在R上的奇函数,g(x)与f(x)的图象关于直线x=1对称,若g(x)=a(x-2)-(x-2)3
(1)求f(x)的解析式;
(2)当x=1时,f(x)取得极值,证明:对任意x1,x2∈(-1,1),不等式|f(x1)-f(x2)|<4恒成立;
(3)若f(x)是[1,+∞)上的单调函数,且当x≥1,f(x)≥1时,有f[f(x)]=x,求证:f(x)=x

查看答案和解析>>

同步练习册答案