分析 (1)根据对数函数与指数函数的定义与性质,列出不等式组$\left\{\begin{array}{l}{x+1>0}\\{1-x∈R}\end{array}\right.$,求出解集即可;
(2)讨论a的值,根据函数f(x)与g(x)的单调性,判断G(x)=f(x)-g(x)的单调性即可.
解答 解:(1)∵函数f(x)=loga(x+1),g(x)=a1-x(其中a>0且a≠1),
∴$\left\{\begin{array}{l}{x+1>0}\\{1-x∈R}\end{array}\right.$,
解得x>-1,
∴函数F(x)=f(x)+g(x)的定义域为{x|x>-1};
(2)∵f(x)=loga(x+1),g(x)=a1-x=a•a-x=a•${(\frac{1}{a})}^{x}$,
∴当a>1时,0<$\frac{1}{a}$<1,f(x)是增函数,g(x)是减函数,
∴G(x)=f(x)-g(x)是增函数;
当1>a>0时,$\frac{1}{a}$>1,f(x)是减函数,g(x)是增函数,
∴G(x)=f(x)-g(x)是减函数;
综上,a>1时,G(x)=f(x)-g(x)是增函数,
1>a>0时,G(x)=f(x)-g(x)是减函数.
点评 本题考查了指数函数与对数函数的定义与性质的应用问题,也考查了分类讨论思想的应用问题,是基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com