精英家教网 > 高中数学 > 题目详情

在直三棱柱中,AA1=AB=BC=3,AC=2,D是AC的中点.

(1)求证:B1C∥平面A1BD;
(2)求平面A1DB与平面DBB1夹角的余弦值.

(1)详见解析;(2)平面A1DB与平面DBB1夹角的余弦值为

解析试题分析:(1)求证:平面;利用线面平行的判定定理,证明线面平行,即证线线平行,可利用三角形的中位线,或平行四边形的对边平行,本题由于的中点,可连接与点,连接,利用三角形中位线的性质,证明线线平行即可;(2)求平面与平面夹角的余弦值,取中点,则平面,则两两垂直,以分别为轴建立空间直角坐标系,写出各点的坐标,求出平面的法向量、平面的法向量,利用向量的夹角公式,即可求解.
试题解析:(1)连接AB1交A1B与点E,连接DE,则B1C∥DE,则B1C∥平面A1BD4分
(2)取A1C1中点F,D为AC中点,则DF⊥平面ABC,
又AB=BC,∴BD⊥AC,∴DF、DC、DB两两垂直,
建立如图所示空间直线坐标系D-xyz,则D(0,0,0), B(0,,0),A1(-1,0,3)

设平面A1BD的一个法向量为,


,则     8分
设平面A1DB与平面DBB1夹角的夹角为θ,平面DBB1的一个法向量为,         10分

∴平面A1DB与平面DBB1夹角的余弦值为.    12分
考点:用空间向量求平面间的夹角;直线与平面平行的判定;二面角的平面角及求法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图所示,在多面体ABCDEFG中,平面ABC∥平面DEFGAD⊥平面DEFGBAACEDDGEFDG,且AC=1,ABEDEF=2,ADDG=4.
 
(1)求证:BE⊥平面DEFG
(2)求证:BF∥平面ACGD
(3)求二面角FBCA的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,ABCD是块矩形硬纸板,其中AB=2ADADEDC的中点,将它沿AE折成直二面角D-AE-B.

(1)求证:AD⊥平面BDE
(2)求二面角B-AD-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在矩形ABCD中,AB=2AD=2,OCD的中点,沿AO将△AOD折起,使DB.

(1)求证:平面AOD⊥平面ABCO
(2)求直线BC与平面ABD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,ABCDAB=4,BCCD=2,AA1=2,EE1F分别是棱ADAA1AB的中点.

(1)证明:直线EE1∥平面FCC1
(2)求二面角B-FC1-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在等腰梯形ABCD中,ADBCADBC,∠ABC=60°,NBC的中点,将梯形ABCDAB旋转90°,得到梯形ABCD′(如图).

(1)求证:AC⊥平面ABC′;
(2)求证:CN∥平面ADD′;
(3)求二面角A-CN-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥中,是正三角形,四边形是矩形,且平面平面

(Ⅰ)若点的中点,求证:平面
(II)试问点在线段上什么位置时,二面角的余弦值为.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图所示的多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1。

(1)请在线段CE上找到一点F,使得直线BF∥平面ACD,并证明;
(2)求平面BCE与平面ACD所成锐二面角的大小;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在三棱锥SABC中,底面是边长为2的正三角形,点S在底面ABC上的射影O恰是AC的中点,侧棱SB和底面成45°角.

(1)若D为侧棱SB上一点,当为何值时,CD⊥AB;
(2)求二面角S-BC-A的余弦值大小.

查看答案和解析>>

同步练习册答案