精英家教网 > 高中数学 > 题目详情
10.下列不等式中无解的是(  )
A.x2+2x-1≤0B.x2+4x+4≤0C.4-4x-x2<0D.2-3x+2x2≤0

分析 分析不等式对应函数的图象和性质,及对应方程根的个数,可得结论.

解答 解:x2+2x-1=0的△=8>0,故不等式x2+2x-1≤0有解;
x2+4x+4=0的△=0,故不等式x2+4x+4≤0有解;
y=4-4x-x2的图象开口朝下,故不等式4-4x-x2<0有解;
2-3x+2x2=0的△=-7<0,故不等式2-3x+2x2≤0无解;
故选:D.

点评 本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知f(sinx)=cosx,求f(cosx)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.己知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F,O为原点,在椭圆上存在一个点P使得△OFP为等边三角形,则椭圆的离心率为(  )
A.$\sqrt{3}$-1B.2-$\sqrt{3}$C.$\frac{{\sqrt{5}}}{2}-1$D.$\frac{{\sqrt{5}}}{2}-1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知点A(0,1),向量$\overrightarrow{AC}$=(-4,-3),若向量$\overrightarrow{BC}$=(-7,-4),则B点的坐标为(  )
A.(-3,2)B.(4,5)C.(3,2)D.(-3,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.长方体ABCD-A1B1C1D1中,若$\overrightarrow{AB}$=3i,$\overrightarrow{AD}$=2j,$\overrightarrow{A{A}_{1}}$=5k,则$\overrightarrow{A{C}_{1}}$=(  )
A.$\overrightarrow{i}$+$\overrightarrow{j}$+$\overrightarrow{k}$B.$\frac{1}{3}$$\overrightarrow{i}$+$\frac{1}{2}$$\overrightarrow{j}$+$\frac{1}{5}$$\overrightarrow{k}$C.3$\overrightarrow{i}$+2$\overrightarrow{j}$+5$\overrightarrow{k}$D.3$\overrightarrow{i}$+2$\overrightarrow{j}$-5$\overrightarrow{k}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系xOy中,已知曲线C:$\left\{\begin{array}{l}{x=\sqrt{3}cosα}\\{y=sinα}\end{array}\right.$(α为参数),以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:ρ(cosθ-sinθ)=6.
(I)在曲线C上求一点P,使点P到直线l的距离最大,并求出此最大值;
(Ⅱ)过点M(-1,0)且与直线l平行的直线l1交C于A,B两点,求点M到A,B两点的距离之积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.命题“$?x∈[{1,15}],x+\frac{15}{x}<16$”的否定是?$x∈[1,15],x+\frac{15}{x}≥16$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=ax5-bx+|x|-1,若f(-2)=2,求f(2)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.对任意的两个实数a,b,定义$min(a,b)=\left\{\begin{array}{l}a,a<b\\ b,a≥b\end{array}\right.$,若f(x)=4-x2,g(x)=3x,则min(f(x),g(x))的最大值为3.

查看答案和解析>>

同步练习册答案