若An和Bn分别表示数列{an}和{bn}前n项的和,对任意正整数n,an=-,4Bn-12An=13n.
(1)求数列{bn}的通项公式;
(2)设有抛物线列C1,C2,…,Cn,…抛物线Cn(n∈N*)的对称轴平行于y轴,顶点为(an,bn),且通过点Dn(0,n2+1),求点Dn且与抛物线Cn相切的直线斜率为kn,求极限.
(3)设集合X={x|x=2an,n∈N*},Y={y|y=4bn,n∈N*}.若等差数列{Cn}的任一项Cn∈X∩Y,C1是X∩Y中的最大数,且-265<C10<-125.求{Cn}的通项公式.
解:(1)∵a1=-,an-an-1=- ∴数列{an}是以-为首项,-1为公差的等差数列. ∴An= 由4Bn-12An=13n,得Bn= ∴bn=Bn-Bn-1=- (2)设抛物线Cn的方程为y=a(x+)2- 即y=x2+(2n+3)x+n2+1 ∵y′=2x+(2n+3),∴Dn处切线斜率kn=2n+3. ∴ (3)对任意n∈N*,2an=-2n-3,4bn=-12n-5=-2(6n+1)-3∈X ∴yX,故可得X∩Y=Y. ∵c1是X∩Y中最大的数,∴c1=-17 设等差数列{cn}的公差为d,则c10=-17+9d ∵-265<-17+9d<-125得-27<d<-12 而{4bn}是一个以-12为公差的等差数列. ∴d=-12m(m∈N*),∴d=-24 ∴cn=7-24n(n∈N*)
|
科目:高中数学 来源:数学教研室 题型:044
(1)求数列{bn}的通项公式;
(2)设有抛物线列C1,C2,…,Cn,…抛物线Cn(n∈N*)的对称轴平行于y轴,顶点为(an,bn),且通过点Dn(0,n2+1),求点Dn且与抛物线Cn相切的直线斜率为kn,求极限.
(3)设集合X={x|x=2an,n∈N*},Y={y|y=4bn,n∈N*}.若等差数列{Cn}的任一项Cn∈X∩Y,C1是X∩Y中的最大数,且-265<C10<-125.求{Cn}的通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
(1)求数列{bn}的通项公式;
(2)设有抛物线列C1,C2,…,Cn,…,抛物线Cn(n∈N*)的对称轴平行于y轴,顶点为(an,bn),且通过点Dn(0,n2+1),过点Dn且与抛物线Cn相切的直线的斜率为kn,求极限.
(3)设集合X={x|x=2an,n∈N*},Y={y|y=4bn,n∈N*},若等差数列{Cn}的任一项Cn∈X∩Y,C1是X∩Y中的最大数,且-265<C10<-125,求{Cn}的通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
(1)求数列{bn}的通项公式;
(2)设有抛物线列c1、c2、…cn、…,抛物线cn(n∈N)的对称轴平行于y轴,顶点为(an,bn),且通过点Dn(0,n2+1),过点Dn且与抛物线cn相切的直线斜率为kn,求极限;
(3)设集合X={x|x=2an,n∈N},Y={y|y=4bn,n∈N}.若等差数列{cn}的任一项cn∈X∩Y,
c1是X∩Y中的最大数,且-265<c10<-125,求{cn}的通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
(1)求数列{bn}的通项公式;
(2)设有抛物线列c1、c2、…cn、…,抛物线cn(n∈N)的对称轴平行于y轴,顶点为(an,bn),且通过点Dn(0,n2+1),过点Dn且与抛物线cn相切的直线斜率为kn,求极限;
(3)设集合X={x|x=2an,n∈N},Y={y|y=4bn,n∈N}.若等差数列{cn}的任一项cn∈X∩Y, c1是X∩Y中的最大数,且-265<c10<-125,求{cn}的通项公式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com